HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

DeGeSim

Deep Generative models for fast and precise physics Simulation

Dirk Krücker DESY CMS group Hamburg, 7.9.2020

JSC - Jülich Supercomputing Centre

The Place

DESY is a research center in Hamburg/Germany

DESY is involved in several HEP experiments

- **CMS** group ~100
- ATLAS group ~100
 - Belle, etc
- We are a large Tier 2 center
- Home of the German National Analysis Facility (NAF) providing computing resources for the German particle physics community
- Running summer schools, e.g. Machine Learning for particle physics

Beside that, we are also a large laboratory for photon science, and we run the linear accelerator for the European XFEL

DESY is member of the Helmholtz Association, an association of 19 German research centers HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

DESY. DeGeSim - D. Krücker

Helmholtz.ai

Helmholtz.ai provides support for the application of Machine Learning/Deep Learning/Artificial Intelligence

- Helmholtz likes the idea to connect different areas within the Helmholtz association and provides funding for interesting projects between groups
- We got founding for research on Generative Deep Neural Nets for fast simulation in particle physics
 - I am interested in fast calorimeter simulation

- JSC Jülich Supercomputing Centre
- FZ Jülich will provide supercomputing resources resources (HPC with GPUs)

Picture Copyright: Forschungszentrum Jülich / Ralf-Uwe Limbach

The project

DeGeSim - Deep Generative Models e.g. GANs

 The CMS branch of the project is looking for a clever PhD to work on Calorimeter Simulation with Deep Learning techniques aiming for HGCal (special interest in Hadron calorimeter simulation)

> Massive need for simulation and smart reconstruction algorithms for HL-LHC (2027) and beyond:

Phase II Upgrade: pile-up → 200
→ novel fine granular detectors
CMS-HGCal: 6 M channels in
5dim
(space+energy+time)

The Phase II CMS endcap calorimeter: HGCal **Fast simulation for CMS HGCal**

Massive need for simulation and smart reconstruction algorithms for HL-LHC and beyond:

 Investigate Deep Learning methods (like GANs, VAEs) to produce fast simulation with high precision for particle tracking, electromagnetic and hadronic showers Idea first presented in: L. Oliveira, M. Paganini and B. Nachman https://arxiv.org/abs/1705.02355

Fast simulation for CMS HGCal

Massive need for simulation and smart reconstruction algorithms for HL-LHC and beyond:

Investigate Deep Learning methods • (like GANs, VAEs) to produce fast simulation with high precision for particle tracking, electromagnetic and hadronic showers

CE-H

Easy idea but many practical challenges

- Conditioning on input particle
 - HGCal complicated hexagonal geometry
- Physical distributions must often be enforced
- GANs are famous for difficult training ٠
- Is Genat4 optimal for hadronic showers
 - Additional training on real data
- etc

(fast)

The job

Start time: we aim for September the 1st – duration 3 years

- **Based at DESY** visits to FZ Jülich (JSC) and CERN •
- PhD in physics from University Aachen (prof. Kerstin Borras)
- This will not be a regular physics PhD but mainly data science!

You will probably not have the time to do a CMS physics data analysis

- Not author of CMS
- Looking for a candidate with strong interest in computing/deep learning with a good math background (not just a hacker ③) and understanding of calorimeters

- We will try to hire the CMS and ATLAS student roughly at the same time
- There is already an ongoing project, AMALEA, at DESY looking into GANs for the Calice calorimeter (same detector design as HGCal) for the ILD
 - There is test beam data
- \Rightarrow To get the critical mass of people working on Generative Deep Learning

Appendix

CMS and ATLAS

Deep Generative models for fast and precise physics Simulation

- **CMS** Fast simulation
 - Detailed GEANT4 simulations are computing intensive
 - CMS can be several minutes for one event already now
 - **HL-LHC** will increase the amount of data by at least an order of magnitude but computing resources will not scale appropriate
 - Complex systems are demanding
 - HGCAL: 6 Million readout channels

- ATLAS precise simulation
 - Pile-up is largely soft QCD physics
 - Difficult to simulate
 - Learn a statistical model from directly from data
 - Apply the same/similar generative DL approaches