Photoproduction at the EIC

Justin Stevens

.S. DEPARTMENT OF Office of Science

Photoproduction

Quasi-real photons: $Q^2 < 1 \text{ GeV}^2$ Real photons: $Q^2 = 0$

No hard scale in production

* What are some questions we can address with photoproduction?

Photoproduction

Quasi-real photons: Q² < 1 GeV² Real photons: Q² = 0

No hard scale in production

* What are some questions we can address with photoproduction?

- *** Nucleon structure (GPDs): Timelike Compton Scattering**
- ***** Gluon distributions in nucleons and nuclei: Exclusive VM production
- ***** Hadron spectroscopy: XYZ, pentaquarks, gluonic hybrids, etc.
- * This talk: some biased examples (not an exhaustive list)

Nucleon structure (GPDs)

- * **Timelike Compton Scattering**: perturbative hard scale set by outgoing di-lepton pair, rather than scattered electron
- * Complementary to DVCS: universality of GPDs, different access to Compton Form Factors (H, E), systematics, etc.

Forward Physics and QCD

Vector meson production

- * Timelike Compton Scattering: perturbative hard scale set by outgoing di-lepton pair, rather than scattered electron
- * Heavy VM photoproduction: gluon distribution in nucleons and nuclei beyond measurements at HERA, LHC, and RHIC
 - * Ongoing UPC AA or pA at RHIC and LHC: eA is a cleaner probe
 - * Similar requirements as TCS for forward proton and di-leptons

Vector meson production

- * Impact Parameter Distributions (IPD): $f(x, b_T)$ obtained from FT of d σ /dt for J/ ψ with 10 fb⁻¹
- Recent work on heavier Y shows complimentary performance with higher luminosity of 100 fb⁻¹
- * Threshold photoproduction of VMs
 - Trace Anomaly, origin of proton mass (<u>recent workshop</u>)
 - * Exotic hadron production?

Threshold VM production and P⁺_c

Threshold VM production and P⁺_c

* Free of re-scattering effects

* Accessible with real photon beams at JLab up to E_{γ} = 12 GeV

- * Initial limits on BR($P_c \rightarrow J/\psi p$) < 2-4%, additional model constraints
- Other experiments @ JLab: CLAS12, 007[™] and more GlueX statistics

* Mass (~11 GeV) not accessible at JLab fixed target

Is this threshold regime accessible in UPC at LHC, and if so, what is expected precision?

Hadron Spectroscopy at EIC

- Recent discovery of many new "exotic" states whose quark content contains both charm-anticharm and light quarks
- * Where to look for them?
 - * e+e-: CLEO, BESIII, BaBar, Belle II (J^{PC} = 1--)
 - * pp: LHCb, etc.
 - $* p \overline{p}$: PANDA@GSI
- *** Photoproduction:** GlueX, CLAS12, ... EIC!

XYZ states

- Many new states observed in the last few years
- Not predicted by the standard charmonium models
- Many models for interpretation: resonant states, meson molecules, re-scattering effects, etc.

a) pion b) proton c) Z_c(3900) c) d c

Physics Viewpoint 6, 69 (2013)

Meson Molecule?

What does EIC have to offer?

- * Alternative production mechanism for XYZs: photoproduction
 - * Polarized beams provide additional handle on production
- High luminosity, exclusive detection, and "clean" environment, relative to HL-LHC
- Very active development of detector conceptual designs with potential for optimization (EIC Yellow Report)

Justin Stevens, WILLIAM & MARY 15

Forward Physics and QCD

Justin Stevens, WILLIAM & MARY 16

Z_c⁺(3900) at an EIC

* Assume modest energy electron and proton beams: $E_p = 41 \text{ GeV}$ and $E_e = 5 \text{ GeV}$

* Z_c and subsequent decays are boosted in proton direction

* Low-Q² electron and forward neutron in ZDC

Z_c⁺(3900) at an EIC

J^{PAC}: PRD 102, 114010 (2020)

 $\pi^+(u\bar{d})$

 $J/\psi(c\bar{c})$

tetraquark candidate

 Z_c^+

In-medium effects @ EIC

* Dependence of breakup of X(3872) in nuclei?

Therefore, exotic structure can be studied by measuring suppression in eA collisions.

https://indico.bnl.gov/event/8231/contributions/37696/attachments/28300/43650/EIC_Pavia_JHF_Ping_Xuan_Matt_v4.pdf

Hadron Spectroscopy @ EIC

- * Energy coverage provides opportunities in XYZ, P_c, etc.
- * EIC Yellow Report: defining detector detector requirements for EIC, to be completed in 2020

 Image: 1
 Image: 2
 Image

"Far-backward": low-Q² tagger

* See previous talk for more details on forward scattered nucleon detection for exclusivity

Hadron Spectroscopy @ EIC

- * Energy coverage provides opportunities in XYZ, P_c, etc.
- * EIC Yellow Report: defining detector detector requirements for EIC, to be completed in 2020

Asymmetric detector concepts due to asymmetric beam energies: "complete" coverage for Inl < 3.5

Hadron Spectroscopy @ EIC

- * Energy coverage provides opportunities in XYZ, P_c, etc.
- * EIC Yellow Report: defining detector detector requirements for EIC, to be completed in 2020

Many groups participating: JAC, JLab, Florida State, Indiana, W&M, Glasgow, INFN, Regina. More welcome!

Summary

- * Photoproduction provides some new avenues to pursue the EIC physics program: 3D nucleon structure, gluon distributions, etc.
- * Observation of "exotic" states in heavy quarkonium are challenging our understanding of the hadron spectrum and QCD
 - * Plenty more data to come from BESIII, Belle II, LHC, PANDA, etc. on the timeline of the EIC
 - * EIC provides an alternative production mechanism to probe exotic hadrons, with detector requirements being defined now!
- * Continued theory/experiment collaboration and high statistics experiments promise to provide an exciting (exotic) future

