

Matthew Rudolph (MIT) on behalf of the CMS Collaboration

Implications of First LHC Data MIT-Berkeley Workshop August 12, 2010

Outline

- Will present the first measurements at 7 TeV in CMS of J/ ψ and Υ production
- Inclusive differential J/ ψ cross section and non-prompt fraction
- $\Upsilon(1s)$ cross section and $\Upsilon(2s+3s)/\Upsilon(1s)$ ratio
- Start of dimuon analyses!

Quarkonia Modelling

- Quarkonia production theoretically and experimentally puzzling
- No theory has simultaneously explained experimental measurements of both cross section and polarization
- Opportunity at LHC to provide valuable input to understanding of quarkonia production, including reach to higher p_τ region

 For this analysis rely on muon chambers (DTs, CSCs, RPCs) for triggering and ID, and inner silicon pixel and strip tracker for momentum measurement

Triggering

- Muon trigger important driver for quarkonia analysis
- Includes hardware (Level1) and software (HLT) parts
- Hardware works with all muon systems, HLT also includes fast inner tracking algorithm
- In early running trigger menus and prescales are still changing
- Presented analyses use:
 - L1 dimuon trigger does not require an explicit p_{τ} cut on the muons, and allows use of events with low p_{τ} forward muons ($|\eta| < 2.4$)
 - HLT single muon trigger requires $p_{\tau} > 3$ GeV for one muon

$$\frac{d^2\sigma}{dp_T dy}(pp \to Q\bar{Q}X) \times \mathcal{B}(Q\bar{Q} \to \mu^+\mu^-) = \frac{1}{\int L dt \cdot A \cdot dt}$$

- A = acceptance from simulation -
- ε's trigger and reconstruction efficiency measured with J/ψ data using tag and probe method
- Measurement includes quarkonia from feeddown in cross section – only non-prompt J/ψ from b decays measured separately

Polarization Effects

- Production polarization is unknown
- Would be largest systematic uncertainty
- Different polarization parameters λ have large effect on acceptance

$$W(\cos\theta,\phi) = \frac{3}{2(3+\lambda_{\theta})} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos 2\phi + \lambda_{\theta\phi}\sin 2\theta\cos\phi)$$

- Quote isotropic decay result as well as results for 4 other polarizations – LHC wide agreement to facilitate comparison
- Non-prompt J/ ψ component modelled from theory and b-factory experimental results

- J/ ψ and Υ feature similar selections:
 - Track and muon quality (number of hits, χ^2 , impact parameters...)
 - Vertexing of opposite sign muons (require probability > 0.1%)
- Kinematic cuts on muons:

J/	ψ	Υ			
$ \eta < 1.3$	$p_T > 3.3 \text{ GeV}$	$ \eta < 1.6$	$p_T > 3.5 \text{ GeV}$		
$1.3 < \eta < 2.2$	$p > 2.9 \mathrm{GeV}$	$1.6 < \eta < 2.4$	$p_T > 2.5 \text{ GeV}$		
$2.2 < \eta < 2.4$	$p_T > 0.8 \text{ GeV}$				

- J/ψ kinematic cuts are more aggressive to include as much of signal as possible for low luminosity measurement

- Yields extracted with unbinned maximum likelihood fit
- J/ψ Crystal Ball + exponential
- Υ Crystal Balls + linear
 - Common resolution for three peaks

Systematic Uncertainties

- Many uncertainties in common between J/ ψ and Υ
- Polarization treated not as systematic uncertainty but different hypotheses used to provide separate results
- Efficiency tag and probe uncertainty, factorization of efficiencies, binning effects
- Acceptance FSR, p_T spectrum shape, momentum scale and resolution, b fraction, luminous region...
- Fit systematic uncertainties yield and b fraction. Validated with MC
- Largest systematic uncertainty is muon efficiency from tag and probe uncertainties (~10%)

J/w Cross Section

 Differential cross section result with two rapidity bins for unpolarized scenario

Prompt and Non-prompt

 Measure the contribution of prompt and non-prompt components of J/ψ with 2D unbinned likelihood fit to mass and pseudo-proper decay length

$$I_{J/\psi} = \frac{L_{xy}^{J/\psi} * M^{J/\psi}}{p_T^{J/\psi}}$$

 Three gaussian resolution alone for prompt part, convolution with exponential for non-prompt part

Prompt and Non-prompt

- Results for prompt (left) and non-prompt (right) J/ ψ differential cross section compared to MC and theory curves
- Discrepancy for prompt component at low p₁

- Jifferential result in p_T with single rapidity bin compared MC and theory curves Differential result in p₁ with
- Total

 $\sigma(pp \to Y(1S)X) \cdot \mathcal{B}(Y(1S)) \to \mu^+\mu^-) =$

 $8.3 \pm (0.5)_{\text{stat.}} \pm (0.9)_{\text{lumi.}} \pm (1.0)_{\text{syst.}}$ nb

Ratio Y(2S) + Y(3S) to Y(1S) ratio $0.44 \pm 0.06 \pm 0.05$

Conclusions

- First CMS quarkonia measurements at 7 TeV already showing good capability for comparisons with predictions
 - J/ψ and $\Upsilon(1s)$ differential cross sections
 - Non-prompt J/ ψ fraction from b decay
 - $\Upsilon(2s+3s)/\Upsilon(1s)$ cross section ratio
- Shown excellent detector performance that demonstrates the good prospects for muon analyses in CMS

• To come:

- Measurements limited by systematics but can improve both detector knowledge and analysis strategy
- Polarization measurements essential for complete understanding

Backup

Documents

- Relevant public CMS physics analysis summaries:
 - BPH-PAS 10-002 J/ ψ prompt and non-prompt cross sections in pp collisions at $\sqrt{s} = 7$ TeV
 - BPH-PAS 10-003 Upsilon production cross section in pp collisions at \sqrt{s} = 7 TeV
 - EWK-PAS 10-004 Measurement of CMS luminosity
 - MUO-PAS 10-002 Performance of muon identification in pp collisions at $\sqrt{s} = 7 \text{ TeV}$
 - TRK-PAS 10-002 *Measurement of tracking efficiency*
 - TRK-PAS 10-004 Measurement of momentum scale and resolution using low-mass resonances and cosmic-ray muons

J/w Cross Sections

• Prompt and non-prompt in other rapidity bin

M. Rudolph - MIT-Berkeley Workshop

J/\u03cf Cross Sections

Table 3: Differential cross sections, and average p_T in the bin (in the data), for each prompt J/ψ polarization considered: the default null polarization, the polarization fully longitudinal ($\lambda_{\theta} = -1$) and fully transverse ($\lambda_{\theta} = +1$) in either the Collins-Soper (CS) or the Helicity (HX) frames (see Ref. [6]). Only for the null polarization case, the first error is statistical and the second is systematical; for the others the error is the total one.

$p_T^{J/\psi}$	$\langle p_T^{J/\psi} \rangle$	$BR(J/\psi \to \mu^+\mu^-) \cdot \frac{d\sigma}{d\nu_r}$ (nb/ GeV/c)							
(GeV/c)	(GeV/c)	Prompt J/ψ polarization							
		null	$\lambda_{\theta}^{CS} = -1$ $\lambda_{\theta}^{CS} = +1$			$\lambda_{\theta}^{HX} = +1$			
			y < 1.4						
4 - 6	5.11	$34.9 \pm 2.5 \pm 6.0$	45.5 ± 14.6	32.2 ± 6.3	25.5 ± 10.3	42.9 ± 12.1			
6 - 8	6.98	$16.18 \pm 0.84 \pm 2.33$	18.84 ± 4.04	15.15 ± 2.58	12.22 ± 4.58	19.30 ± 4.41			
8 - 10	8.89	$8.49 \pm 0.45 \pm 1.35$	9.80 ± 1.64	7.97 ± 1.69	6.56 ± 2.84	9.98 ± 1.75			
10 - 30	13.41	$0.653 \pm 0.031 \pm 0.097$	0.724 ± 0.099	0.622 ± 0.120	0.543 ± 0.184	0.728 ± 0.101			
1.4 < y < 2.4									
0 - 1	0.64	$185\pm12\pm38$	131 ± 67	234 ± 68	134 ± 65	229 ± 63			
1 - 1.5	1.24	$419\pm40\pm138$	298 ± 172	524 ± 205	314 ± 162	501 ± 187			
1.5 - 2	1.73	$393\pm24\pm110$	281 ± 150	490 ± 167	302 ± 136	464 ± 147			
2 - 3	2.44	$214\pm9\pm33$	155 ± 71	265 ± 65	169 ± 58	248 ± 51			
3 - 4	3.45	$116\pm5\pm19$	86 ± 36	141 ± 35	93 ± 30	133 ± 28			
4 - 6	4.87	$54.6 \pm 3.0 \pm 10.$	44.0 ± 14.0	62.7 ± 14.6	44.5 ± 13.7	62.0 ± 14.1			
6 - 8	6.84	$14.92 \pm 0.64 \pm 2.60$	13.74 ± 2.87	15.95 ± 3.00	12.74 ± 3.38	16.42 ± 3.24			
8 - 10	8.86	$5.88 \pm 0.34 \pm 1.00$	5.80 ± 1.09	5.97 ± 1.03	5.18 ± 1.46	6.31 ± 1.01			
10 - 30	12.97	$0.307 \pm 0.024 \pm 0.048$	0.309 ± 0.054	0.308 ± 0.054	0.281 ± 0.057	0.323 ± 0.058			

Plii

J/ψ Systematics

Table 2: Relative uncertainties (in percent) on the corrected yield, in each p_T bin: statistical, final state radiation (FSR), p_T calibration, B-fraction, Non-prompt polarization, muon efficiency, ρ -factor, Fit functions

$p_T^{J/\psi}$	Statistics	FSR	$p_{\rm T}$	B-frac.	non-prompt	Muon	ρ	Fit
(GeV/c)			calibration		polar.	effic.		function
				y < 1.4				
4 - 6	7.2	2.0	3.1	0.1	0.0	11.1	4.6	6.1
6 - 8	5.2	2.0	2.4	0.2	0.1	7.0	7.0	0.2
8 - 10	5.3	1.6	1.4	0.3	0.1	9.9	7.1	0.6
10 - 30	4.7	0.9	0.7	0.4	0.2	10.8	1.2	1.0
			1.4	y < 2	2.4			
0 - 1	6.4	0.8	0.3	0.1	0.0	10.5	12.6	6.5
1 - 1.5	9.5	0.7	0.3	0.0	0.0	11.4	28.2	8.3
1.5 - 2	6.1	0.4	0.5	0.0	0.0	11.2	22.7	6.1
2 - 3	4.3	0.2	0.9	0.0	0.0	10.0	5.6	2.4
3 - 4	3.9	0.6	0.7	0.1	0.0	9.7	5.9	6.8
4 - 6	5.6	0.8	0.5	0.1	0.0	10.6	9.3	5.7
6 - 8	4.3	0.6	0.4	0.1	0.0	9.4	6.8	8.3
8 - 10	5.8	0.5	0.2	0.2	0.1	13.1	4.2	1.0
10 - 30	7.8	0.2	0.2	0.2	0.1	11.8	0.6	2.1

Plii

Y Cross Section

Table 4: The product of the Y(1S) integrated and differential production cross sections and the dimuon branching fraction, in nb, measured for various polarization scenarios (L= 100% longitudinal, T= 100% transverse) integrated over the rapidity range |y| < 2.0. Uncertainties are statistical only.

	$\sigma(pp \rightarrow Y(1S)X) \cdot \mathcal{B}(Y(1S) \rightarrow \mu^+\mu^-) \text{ [nb], } y < 2.0$							
$\Delta p_{\rm T}$		Collins	s-Soper	Helicity				
(GeV/c)	unpolarized	L	Т	L	Т			
0-2	1.3 ± 0.2	1.0 ± 0.1	1.5 ± 0.2	1.0 ± 0.1	1.5 ± 0.2			
2-3	1.3 ± 0.2	0.9 ± 0.1	1.5 ± 0.2	1.0 ± 0.1	1.5 ± 0.2			
3-5	2.4 ± 0.3	1.8 ± 0.2	2.8 ± 0.3	1.8 ± 0.2	2.8 ± 0.3			
5-8	2.0 ± 0.3	1.7 ± 0.2	2.2 ± 0.3	1.6 ± 0.2	2.4 ± 0.3			
8-12	0.8 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.7 ± 0.1	1.0 ± 0.2			
12-20	0.6 ± 0.1	0.6 ± 0.1	0.5 ± 0.1	0.45 ± 0.1	0.6 ± 0.1			
0-20	8.3 ± 0.5	6.9 ± 0.4	9.3 ± 0.5	6.5 ± 0.4	9.6 ± 0.6			

Plii

• Relative systematic uncertainties for Y cross section

$\Delta p_{\rm T}$	\mathcal{A}^{Y}	ε _{muid}	$\varepsilon_{\rm trig}$	$\varepsilon_{\rm trk}$	FSR	S p _T	Т	TJ/ψ	PDF	Σ
0-2	0.5	9.5	3.4	0.6	3.5	0.2	2.1	2.0	0.4	11.1
2-3	0.5	10.0	3.5	0.6	4.1	0.6	2.1	1.4	0.4	11.7
3-5	0.6	10.0	0.5	0.6	3.7	0.5	2.0	1.3	0.4	11.0
5-8	0.6	11.0	6.2	0.6	3.2	0.6	1.8	2.0	0.4	13.3
8-12	0.6	10.3	6.5	0.6	2.6	0.8	2.2	2.9	0.4	13.1
12-20	0.4	13.3	14.0	0.7	2.3	1.6	2.2	4.3	0.4	20.1
0-20	0.6	10.4	5.1	0.6	3.4	0.5	2.0	2.0	0.4	12.5