Early Electroweak Measurements at the LHC

- 1. Motivation
- 2. W/Z production: on and off the resonance
- 3. Di-boson production
- 4. Conclusions

Ulrich Baur State University of New York at Buffalo

1 – Introduction

- I will concentrate on two topics:
 - $\Leftrightarrow W/Z$ production on and off the resonance
 - di-boson production: probing gauge boson self-couplings
- W/Z production:
 - Standard candles
 - $\Leftrightarrow W$ mass measurement (maybe not in the first year or so...)
 - constraining PDF's
 - \checkmark search for W' and Z' resonances

- di-boson production:
 - ☞ probe WWV, $V = \gamma$, Z, vertex in $W\gamma$, WZ and WW production
 - rightarrow probe $ZZ\gamma$ and $Z\gamma\gamma$ vertices in $Z\gamma$ production
 - rightarrow probe $ZZ\gamma$ and ZZZ couplings in ZZ production
- I will concentrate on how higher order QCD and electroweak (EW) corrections affect measurements
- most numerical results are for $\sqrt{s} = 14$ TeV, but hold *mutatis* mutandis for $\sqrt{s} = 7$ TeV

$Z \rightarrow ee candidate$

CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST

Electrons $p_T = 34.0, 31.9 \text{ GeV/c}$ Inv. mass = 91.2 GeV/c²

ee mass: 91.2 GeV

27

W→ev Candidate

- expect a torrent of W's and Z's at the LHC in the near future
- for $\sqrt{s} = 7$ TeV: $\sigma(W^{\pm} \rightarrow \ell \nu) \approx 10.5$ nb $\sigma(Z \rightarrow \ell^{+} \ell^{-}) \approx 0.96$ nb
- cross section approximately doubles for $\sqrt{s} = 14 \text{ TeV}$
- Status of theory calculations for W/Z production:
 - The NNLO QCD corrections to W/Z production are known in fully differential form (Melnikov, Petriello) and are available in form of a parton level MC program (FEWZ)
 - resummed NLL QCD corrections (soft gluon resummation) are known (RESBOS)
 - NLO QCD corrections have been merged with HERWIG in MC@NLO and POWHEG

- Status of theory calculations for W/Z production (continued...)
 - several calculations of the full $\mathcal{O}(\alpha)$ EWK corrections to W/Zproduction exist (UB, Wackeroth [WGRAD, ZGRAD]; Bardin *et al.* [SANC]; Carloni Calame *et al.* [HORACE]; Dittmaier, Denner; Jadach *et al.* [WINHAC])
- Why do we need higher order QCD corrections?
 - \checkmark LO cross sections strongly depend on the renormalization and factorization scales, μ_R and μ_F , used
 - this dependence is an artificial byproduct of truncating the perturbation series
 - the scale dependence is (usually) reduced when higher order QCD corrections are included, and NLO theory predictions tend to agree much better with actual data

• Example: W + n jet production at the Tevatron

(C. Berger et al., arXiv:0907.1984)

♯ of jets	CDF	LO	NLO
1	53.5 ± 5.6	$41.40(0.02) {+7.59 \\ -5.94}$	$57.83(0.12) {+4.36 \\ -4.00}$
2	6.8 ± 1.1	$6.159(0.004) {+2.41} {-1.58}$	$7.62(0.04) {+0.62 \\ -0.86}$
3	0.84 ± 0.24	$0.796(0.001) {+0.488 \\ -0.276}$	$0.882(0.005) \frac{+0.057}{-0.138}$

• in some cases (eg. W + 1 jet production) NLO is not enough...

- when do we need NNLO corrections?
 - ✓ When NLO corrections are large and NNLO is needed to check expansion (gg → H)
 - For benchmark processes where high precision is needed ($pp \rightarrow jj, W/Z$ production)
- Example: (Anastasiu et al.)

The NNLO residual scale uncertainty is < 1%

- $\mathcal{O}(\alpha)$ electroweak (EWK) corrections to W/Z production
 - I-loop: naively of $O(\alpha) ≤ 1\%$
 - ☞ why bother?
 - EWK corrections may be enhanced by large
 - → collinear logs: $\log(\hat{s}/m_f^2)$, relevant near the W/Z peak
 - → Sudakov logs: $\log(\hat{s}/M_{W/Z}^2)$, relevant at large di-lepton masses
 - rightarrow QCD corrections may be small (example: QCD corrections largely cancel in W/Z cross section ratio)
 - for consistent treatment need PDF's which include QED corrections. These are available in MRSTQED04 set (eventually will need an update to these ...)

Anatomy of the EWK $\mathcal{O}(\alpha)$ Corrections

1-loop EWK corrections shift W and Z masses by O(100 MeV)
 most of the effect comes from final state photon radiation
 proportional to

$$rac{lpha}{\pi} \log\left(rac{\hat{s}}{m_\ell^2}
ight)$$

→ these terms together with the Sudakov logs significantly influence the $\ell^+\ell^-$ inv. mass distribution and $\ell\nu$ transverse mass distribution (pole approximation: no Sudakov logs are present)

Sidebar: W mass measurement at the LHC

• need

$$\delta M_W \approx 7 \times 10^{-3} \cdot \delta m_{top}$$

for equal contribution to M_H uncertainty from m_{top} and M_W

- rightarrow Tevatron: $\delta m_t = 1.1 \text{ GeV} (\text{NEW}!!)$
- rightarrow expect $\delta m_t \approx 1 \text{ GeV}$ at LHC
- Imited by non-perturbative QCD effects, which introduce theoretical uncertainty $\delta m_t = \mathcal{O}(\Lambda_{QCD})$ (renormalon uncertainty)
- → $\delta M_W < 10$ MeV should be goal for LHC

- LHC expectations (for $\sqrt{s} = 14$ TeV):
 - ✓ ATLAS: $\delta M_W = 7$ MeV for 10 fb⁻¹ per lepton channel using the M_T and $p_T(\ell)$ distributions (arXiv:0805.2093)
 - → need excellent understanding of detector (lepton scale and resolution, p_T resolution) to achieve this
 - → assumes that PDF uncertainties can be controlled such that they contribute only 1 MeV to δM_W
 - → assumes that needed theoretical tools will be available to achieve a 1 MeV uncertainty from unknown higher order corrections
 - CMS: $\delta M_W = 40$ MeV (20 MeV) for 1 fb⁻¹ (10 fb⁻¹) using the scaled observable method and the so-called morphing method (J. Phys. G 34 (2007), N193)

→ CMS makes less aggressive assumptions on PDF and theoretical uncertainties

Electroweak Sudakov Logs

- for $\hat{s} \gg M_{W/Z}^2$, the weak corrections become large and negative
- relevant for new physics searches in *lν* and *l⁺l⁻* production (eg. W', Z' searches)
- However, EW corrections do not include real EW corrections, eg.
 WW → ℓνjj which may partially cancel the large, negative EW one-loop corrections (UB)
- answer depends on whether one looks at exclusive or inclusive Drell-Yan production

Combining QCD and EW corrections

- QCD and EW corrections tend to cancel in the high mass region
- for accurate predictions need a calculation which combines QCD and EW corrections, preferably interfaced with PYTHIA or HERWIG
- such a calculation is also needed to achieve $\delta M_W \approx 10$ MeV or better
- The HORACE team has interfaced HORACE (EW corrections) with MC@NLO (NLO QCD corrections consistently interfaced with HER-WIG) (arXiv:0907.0276)

3 – Di-boson production

- Physics interest:
 - rightarrow background to new physics searches (WW and ZZ production background to SM Higgs search)
 - probing weak boson self-interactions
- concentrate on the latter
- qualitative overview of three gauge boson couplings in the Standard Model:
 - $\Leftrightarrow WW\gamma$ and WWZ couplings are non-zero
 - There are no tree level couplings with neutral gauge bosons, ie. $Z\gamma\gamma$, $ZZ\gamma$ and ZZZ couplings all vanish

General $WW\gamma$ and WWZ Couplings

- If we want to test the SU(2)×U(1) gauge theory, we have to go beyond and generalize the WWV ($V = \gamma, Z$) couplings
- The most general effective Lagrangian consistent with electromagnetic gauge invariance and Lorentz invariance is

$$i\mathcal{L}_{eff}^{WWV} = g_{WWV} \left[g_{1}^{V} \left(W_{\mu\nu}^{\dagger} W^{\mu} - W^{\dagger \mu} W_{\mu\nu} \right) V^{\nu} + \kappa_{V} W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} \right. \\ \left. + \frac{\lambda_{V}}{m_{W}^{2}} W_{\rho\mu}^{\dagger} W^{\mu}{}_{\nu} V^{\nu\rho} - g_{4}^{V} W_{\mu}^{\dagger} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) \right. \\ \left. + i g_{5}^{V} \varepsilon_{\mu\nu\rho\sigma} \left((\partial^{\rho} W^{\dagger \mu}) W^{\nu} - W^{\dagger \mu} (\partial^{\rho} W^{\nu}) \right) V^{\sigma} \right. \\ \left. + i \tilde{\kappa}_{V} W_{\mu}^{\dagger} W_{\nu} \tilde{V}^{\mu\nu} + i \frac{\tilde{\lambda}_{V}}{m_{W}^{2}} W_{\rho\mu}^{\dagger} W^{\mu}{}_{\nu} \tilde{V}^{\nu\rho} \right] .$$

 $W_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}; \text{ same for } V_{\mu\nu}; \tilde{V}_{\mu\nu} = (1/2)\epsilon_{\mu\nu\rho\sigma}V^{\rho\sigma}$ $g_{WW\gamma} = e; g_{WWZ} = e \cot \theta_W$

• In the SM:

$$g_1^Z = g_1^\gamma = \kappa_Z = \kappa_\gamma = 1,$$

$$\lambda_Z = \lambda_\gamma = g_4^V = g_5^Z = g_5^\gamma = \tilde{\kappa}_V = \tilde{\lambda}_V = 0$$

• g_1^V , κ_V and λ_V respect charge conjugation (C) and parity (P)

- g_4^V and g_5^V violate C invariance
- g_4^V , $\tilde{\kappa}_V$ and $\tilde{\lambda}_V$ violate CP invariance
- for on-shell photons: $g_1^{\gamma} = 1$ (electric charge of W), $g_4^{\gamma} = g_5^{\gamma} = 0$ (em gauge invariance)
- higher dimensional operators do not lead to a new Lorentz structure
- they can be taken into account by allowing the couplings g_1^V , κ_V etc. to be energy dependent so-called form factors

• the $WW\gamma$ couplings are related to the static moments of the W (μ_W (d_W): (magnetic (electric) dipole moment; q_W (\tilde{q}_W) electric (magnetic) quadrupole moment)

$$\mu_W = \frac{e}{2m_W} \left(g_1^{\gamma} + \kappa_{\gamma} + \lambda_{\gamma} \right) , \qquad d_W = \frac{e}{2m_W} \left(\tilde{\kappa}_{\gamma} + \tilde{\lambda}_{\gamma} \right) ,$$
$$q_W = -\frac{e}{m_W^2} \left(\kappa_{\gamma} - \lambda_{\gamma} \right) \qquad \tilde{q}_W = -\frac{e}{m_W^2} \left(\tilde{\kappa}_{\gamma} - \tilde{\lambda}_{\gamma} \right) .$$

- S-matrix unitarity requires weak boson self-couplings to be of SM form at high energies
- anomalous weak boson couplings need to have a form factor behaviour such as

$$\frac{1}{(1+\frac{\hat{s}}{\Lambda^2})^n}$$

where Λ is the scale of new physics responsible for the non-standard couplings (n = 2 is often used)

Neutral Weak Boson Couplings

- appear in $Z\gamma$ and ZZ production
- there are $4 ZZ\gamma$, h_i^Z (i = 1, ..., 4), and $4 Z\gamma\gamma$ couplings, h_i^{γ} , which contribute to $q\bar{q} \rightarrow Z\gamma$
- $h_{1,3}$ ($h_{2,4}$) correspond to dimension 6 (8) terms in the Lagrangian
- $h_{1,2}$ ($h_{3,4}$) violate (conserve) CP
- the $Z\gamma\gamma$ vertex function vanishes if both photons are on-shell (Yang's theorem)
- there are also 2 ZZZ ($f_{4,5}^Z$) and 2 ZZ γ couplings ($f_{4,5}^\gamma$) contributing to $q\bar{q} \rightarrow ZZ$
- all these couplings have to be form factors which $\rightarrow 0$ for $\hat{s} \rightarrow \infty$ to avoid violation of unitarity

• thus, non-standard gauge boson self-couplings lead to an enhanced cross section at large gauge boson transverse momenta

example (form factor scale $\Lambda = 1$ TeV):

QCD corrections to Di-boson Production

- QCD corrections to di-boson production become very large at high energies
- Reason: there is a logarithmic enhancement factor, eg, for $W\gamma$ production, the $qg \rightarrow W\gamma q'$ cross section can be written at high photon transverse momenta $p_T(\gamma)$:

$$d\hat{\sigma}(q_1g \to W\gamma q_{1,2}) = d\hat{\sigma}(q_1g \to \gamma q_1) \frac{\alpha}{4\pi \sin^2 \theta_W} \log^2 \left(\frac{p_T^2(\gamma)}{M_W^2}\right)$$

• similar expressions hold in WZ production and other processes

- the log enhancement is not present in diagrams with the $WW\gamma/WWZ$ vertex
 - → QCD corrections substantially reduce sensitivity to anomalous couplings (UB, J. Ohnemus, T. Han)

- however: at high p_T , most events have a hard jet
 - → a jet veto helps to get the QCD under control and restore sensitivity to anomalous couplings

example: no jets with $p_T(j) > 50 \text{ GeV}$

• Scale dependence:

- Since the (LO) WZ + 1 jet cross section dominates, the scale dependence is not reduced in the inclusive NLO cross section
- \sim Need WZ + 1 jet production at NLO QCD for that
- The However, once a jet veto is imposed, the scale dependence in WZ + 0 jet production appears to be very small
- This could be very misleading!
- NLO QCD corrections to WZ + 1 jet production (Campanario et al., arXiv:1006.0390) (red: inclusive NLO; green: exclusive NLO [no 2nd hard jet])

- Scale dependence (μ is varied by a factor 2 up or down) is small at low minimum $p_T(l)$, and thus in the total cross section, it is large at higher p_T
- \sim need to check for WZ and other diboson production processes

EWK Corrections to WZ Production

- As in single W/Z production, large Sudakov logs appear in in EWK radiative corrections to di-boson production at large p_T
- Example: WZ production (Accomando, Denner, Kaiser)

- EWK corrections to WZ production are substantial (but smaller than the inclusive NLO QCD corrections) and negative
- but, for inclusive WZ + X production, weak boson emission processes (WZV, V = W, Z production) may largely compensate the 1-loop corrections (UB)

Scrutinizing the WWZ vertex at 7 TeV

- recent study by Eboli et al., arXiv:1006.3562
- consider WW and WZ production
- current bounds (from $e^+e^- \rightarrow WW$ and WZ production at the Tevatron) and expected bounds from the LHC @ 7 TeV with 1 fb⁻¹

rightarrow C and P conserving couplings

coupling	PDG bounds	$WZ \ 2\sigma$ limits	$WW \ 2\sigma$ limits
Δg_1^Z	$-0.016 {+0.022 \\ -0.019}$	[-0.055, 0.094]	[-0.33, 0.56]
$\Delta \kappa_Z$	$-0.076^{+0.059}_{-0.056}$	[-0.27, 0.55]	[-0.088, 0.11]
λ_Z	$-0.088 \substack{+0.060 \\ -0.057}$	[-0.051, 0.054]	[-0.055, 0.056]

F	C	and/or	P	violating	coup	lings
---	---	--------	---	-----------	------	-------

coupling	PDG bounds	$WZ \ 2\sigma$ limits	$WW~2\sigma$ limits
g_5^Z	-0.07 ± 0.09	[-0.18, 0.19]	[-0.53, 0.51]
g_4^Z	-0.30 ± 0.17	[-0.08, 0.08]	[-0.48, 0.48]
$ ilde{\kappa}_Z$	$-0.12^{+0.06}_{-0.04}$	[-0.40, 0.40]	[-0.38, 0.38]
$ ilde{\lambda}_Z$	-0.09 ± 0.07	[-0.053, 0.053]	[-0.055, 0.055]

- form factor effects are still quite small at 7 TeV, but not at 14 TeV
- can improve current bounds on λ_Z, g₄^Z and λ_Z (λ_Z and λ_Z) in WZ (WW) production with early LHC data
- further significant improvements (factor of 4 or more) at 14 TeV with 100 fb^{-1}

4 – Conclusions

- EarlyLHC data provide an opportunity to calibrate detectors with well understood processes such as W and Z production
- These are theoretically fairly well understood, although there open questions on how to combine QCD and EWK corrections
- EWK radiative corrections may become large at high p_T
- Early LHC data offer an opportunity to improve bounds on weak boson couplings in di-boson production
- NLO QCD and EWK corrections in di-boson processes may be large, but this depends on whether one does an exclusive or inclusive analysis (ie. jet veto yes, or no)

