http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

One of the first 7 TeV collisions

Charged Particle multiplicities in inelastic interactions in ATLAS

Run Number: 152166, Event Number: 316199 Date: 2010-03-30 12:58:23 CEST

Till Eifert (CERN)

on behalf of the ATLAS Collaboration

Implications of First LHC Data, Berkeley-MIT workshop, Aug. 10-13, 2010

Brief Motivation

- Physics motivation: Improve understanding of non-perturbative soft QCD processes study the properties of inelastic proton-proton collisions
- Experimental motivation: model the pileup and underlying event
 Necessary for measuring physics processes at high energies.

Till Eifert, LBNLMIT10, 11 August 2010

Tuesday, August 10, 2010	1 dN	1	1 $d^2 M$	

Measurement Strategy

Measurements made:

Charged particle multiplicity, its dependence on p_T and η , its correlation with p_T

$$\frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ch}}{\mathrm{d}\eta}, \quad \frac{1}{N_{\rm ev}} \cdot \frac{1}{2\pi p_{\rm T}} \cdot \frac{\mathrm{d}^2 N_{\rm ch}}{\mathrm{d}\eta \mathrm{d}p_{\rm T}}, \quad \frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ev}}{\mathrm{d}n_{\rm ch}} \quad \text{and} \quad \langle p_{\rm T} \rangle \, \mathrm{vs.} \, n_{\rm ch}$$

□ Strategy: As inclusive and model-independent as possible

- Single-arm trigger
- No (model-dependent) corrections back to particular component (e.g. non-single-diffractive)
- ▶ Well-defined phase-space → facilitates MC tuning

□ Studied phase-spaces:

>= 1 particle : $p_T > 500 \text{ MeV}$, $|\eta| < 2.5$: studied at $\sqrt{s} = 0.9$, 2.36, 7 TeV

>= 2 particles: $p_T > 100$ MeV, $|\eta| < 2.5$: studied at $\sqrt{s} = 0.9$,

>= 6 particles: $p_T > 500$ MeV, $|\eta| < 2.5$: studied at $\sqrt{s} = 0.9$, 7 TeV Used in new AMBT1 Pythia 6 tune

Till Eifert, LBNLMIT10, 11 August 2010

shown here

7 TeV

Possible for all √s Most inclusive Diffractive limited

ATLAS Detector Overview

Datasets and Event Selection

- □ MBTS single hit trigger
- **D** 1 Reconstructed Primary Vertex
 - 2 tracks + beam-spot
 - Remove pileup events, i.e. second vertex with
 >= 4 tracks
- Track Selection
 - various quality cuts and remove non-primary tracks by cutting on impact parameters at the primary vertex.

Excellent agreement btw. Data/MC

0.9 TeV (~7 µb-1)	360k events	4.5M tracks
7 TeV (~190 µb-1)	10M events	210M tracks
2.36 TeV	6k events	~40k tracks

Correction Procedure

- Corrections applied event-wise
 - ► Trigger, Vertex

$$w_{\rm ev}(n_{\rm Sel}^{\rm BS}) = \frac{1}{\epsilon_{\rm trig}(n_{\rm Sel}^{\rm BS})} \cdot \frac{1}{\epsilon_{\rm vtx}(n_{\rm Sel}^{\rm BS})}$$

n_{sel^{BS}}: number of tracks; cuts as close to final selection as possible without a vertex

Track-level correction for tracking efficiency, non-primary tracks and tracks from outside of the kinematic range (okr):

$$w_{\rm trk}(p_{\rm T},\eta) = \frac{1}{\epsilon_{\rm bin}(p_{\rm T},\eta)} \cdot (1 - f_{\rm sec}(p_{\rm T})) \cdot (1 - f_{\rm okr}(p_{\rm T},\eta))$$

Iterative Bayesian unfolding method applied to both number of particles (n_{ch}) and p_T

- Correct for events lost in the n_{sel}=0,1 bins:
 - I.e. events with ≥2 particles but <2 tracks</p>

$$w_{out}(n_{ch}) = \frac{1}{(1 - (1 - \epsilon_{trk})^{n_{ch}} - n_{ch} \cdot \epsilon_{trk} \cdot (1 - \epsilon_{trk})^{(n_{ch} - 1)})}$$

 \Rightarrow <pT> vs n_{ch}: bin by bin correction of average pT then n_{ch} migration

Tracking Efficiencies & its Systematics

- Tracking efficiency is determined from MC
 - MC is validated against data
 - parameterized as function of p_T and η .

Main systematic uncertainties

- low-p_T : MC material description
 (estimated using Ks mass, and track extension rate)
- high-p_T : migration of low momentum particles, misalignment
 (estimated using various tracking quantities in data, and
 width of invariant mass)

□ Rate of non-primary tracks is estimated from data

fitting tails of impact parameter distributions

Track Reconstruction @ 2.36 TeV

2 Track reconstruction methods

- Could not use standard tracking as SCT not at nominal configuration
- ► HV= 20V (nominal: 150V)
- ► Reduced hit efficiency (~100% \rightarrow O(50%))
- Test run @ 900 GeV with both SCT configurations

ID tracks

- Use full ID information
- Relaxed track cuts
- ▶ p_T resolution similar to full tracks
- Used for p_T distribution
- Relative efficiency wrt. nominal tracks from test run @ 900 GeV
- Apply ratio as correction factor

Pixel tracks

- Hits from Pixel layers + primary vertex
- Smaller material systematic
- Degraded p_T resolution
- Used for n_{ch} and η distributions
- Relative Pixel efficiency from SCT +TRT tracks (from Data)
- Small correction factor from MC → absolute Pixel efficiency

(¹

Tuesday, August 10, 2010

- ▶ Measurements span ~ 10 orders of magnitude
- Large disagreements at lowest p⊤
- At Intermediate p⊤ much better agreement of new AMBT1 tune

- Shape at high n_{ch} well-modelled
- AMBT1 and Pythia8 reproduce the spectrum the best
- Low n_{ch} shape sensitive to ND,SD,DD fractions

Summary

- □ ATLAS Inner Tracker performing very well
- □ Measured charged particles down to pT > 100 MeV($\sqrt{s} = 0.9 \text{ and } 7 \text{ TeV}$)
- Fully corrected for detector effects
- □ Measurement possible at $\sqrt{s} = 2.36$ TeV (>= 1 particle, pT > 500 MeV)
- No model-dependent corrections applied
- Measurement as inclusive as possible
 - Significant fraction of diffractive events (order 20%)
 - MC models don't agree as well as for p_T > 500
 MeV

References

- Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC
 - CERN-PH-EP/2010-004 (15 March 2010), Phys Lett B 688, Issue 1, 21-42
 - \clubsuit Phase-space: $p_T > 500 \text{ MeV}$
- Charged particle multiplicities in pp interactions for track p_T > 100 MeV at sqrt(s) = 0.9 and 7 TeV measured with the ATLAS detector at the LHC
 - ATLAS CONF NOTE: ATLAS-CONF-2010-046
- Charged particle multiplicities in pp interactions at sqrt(s) = 2.36 TeV measured with the ATLAS detector at the LHC
 - ATLAS CONF NOTE: ATLAS-CONF-2010-047
 - Phase-space: pT > 500 MeV
- D Monte Carlo tunes
 - Charged particle multiplicities in pp interactions at sqrt(s) = 0.9 and 7 TeV in a diffractive limited phase-space measured with the ATLAS detector at the LHC and new PYTHIA6 tune
 - Atlas Minimum Bias Tune 1 (AMBT1), ATLAS-CONF-2010-031
 - ATLAS Monte Carlo tunes for MC09
 - ATLAS MC09 tunes, PHYS-PUB-2010-002

Pile-Up removal

- The fraction of events with more than one p-p interaction is estimated to be around 0.1% for the data collected at 7 TeV.
- The presence of such events might bias the tails on the nch distribution.
- Expect ~1% of events with a second reconstructed vertex:
 - mostly fakes and secondary vertices with few tracks.
- Remove events with a second vertex with more than 3 tracks.
- Residual effects after pileup removal:
 - Fake pileup events removed: 0.03%
 - True pileup events not removed : 0.01%
 - True Pileup events reconstructed as single vertex: 0.01%

Track Reconstruction algorithms: tracks from *inside-out* and *low p*

Impact Parameter Requirements: $|d_0^{PV}| < 1.5 \text{ mm}$, $|z_0^{PV}| \sin \theta < 1.5 \text{ mm}$

Track Length Requirement (2/4/6 cut): $100 < p_T <= 200 \text{ MeV} : N_{SCT} >= 2$ $200 < p_T <= 300 \text{ MeV} : N_{SCT} >= 4$ $p_T > 300 \text{ MeV} : N_{SCT} >= 6$

Pixel Hit Cut: if B-Layer hit is expected, require B-Layer, otherwise 1 Pixel hit

Tracks with $p_T > 10 \text{ GeV}$: Prob(χ^2 ,Ndof) > 0.01

Trigger & Vertex Efficiencies

Trigger efficiency from data:

- measured with respect to a random trigger with a loose requirement on activity in the Inner Tracker
- Efficiency was checked to be flat in p_T and η
- Tracks are extrapolated to beam spot instead of primary vertex in the absence of the vertex

Vertex efficiency from data:

 Dependencies on the longitudinal impact parameter spread (Δz₀) and p_T for events with low track multiplicity are also taken into account.

High-p_T Tracks

A fraction of high-p_T tracks is caused by low p_T particles:

Non-Gaussian tail in track momentum response

Till Eifert, LBNLMIT10, 11 August 2010

18

10⁷ z

10⁶

10⁵

10⁴

10³

10²

ATLAS Preliminary

Simulation (non-diffractive)

140

120

100

80

60

Material uncertainty

- Two data driven methods to estimate difference between the real detector and the material description in the simulation:
 - Invariant mass of $K^0 \rightarrow \pi^+\pi^-$ measured as function of η, φ and decay radius. Greatest sensitivity to small decay radii.
 - Compare track lengths in Data and MC. Probes material description in terms of nuclear radiation length, starting after the Pixel detector.

Non-primary Tracks

The rate of non-primary tracks is estimated by fitting the tails of the transverse impact parameter distribution on data:

- Contribution from conversion electrons and other types of non- primaries are fitted simultaneously.
- Results validated by fitting the longitudinal impact parameter as electrons from conversion look identical to other type of non- primary tracks.

Energy Comparison

ATLAS Inner Detector

Tuning to Minimum Bias & Underlying Event

Tuesday, August 10, 2010

Tuning Selections

- New AMBT1 tune of Pythia 6.4, based on the MC09 tune with reduced color reconnection. (Denoted by MC09c.)
- AMBT1 focusses on matching ATLAS measurements in non-diffractive regimes.
- For Minimum Bias measurements, events were considered only if they included ≥ 6 Selected Tracks.
 - The Pythia 6.4 diffractive processes have negligible contributions to these events.

Model	Parameter	Parameter ID	MC09c	AMBTI
MPI: Incoming Partons	Minimum p⊤	PARP[82]	2.31	2.292
	Energy Extrapolation	PARP[90]	0.2487	0.250
MDI Matter Distribution	Core Matter Fraction	PARP[83]	0.8	0.356
MPI: Matter Distribution	Core Radial Fraction	PARP[84]	0.7	0.651
	Reconnection Strength	PARP[78]	0.224	0.538
Color Reconnection	High p_T Suppression	uppression PARP[77] 0.0	0.0	1.016

Tune Interpretation

- MPI Incoming Partons: p_{T-min} = PARP[82](E_{HS}/1.8TeV)^{PARP[90]}
 - p_{T-min} defines a cutoff (interpreted as screening) for MPI only.
 - Reducing PARP[82] increases MPI in general.
 - ➡ Increasing PARP[90] increases MPI at 900 GeV & reduces it at 7 TeV.
- MPI Matter Distribution:
 - Matter is distributed in a wide gaussian (proton radius) and a core narrow gaussian.
 - Given an impact parameter for colliding protons the overlap determines the MPI probability.
 - A higher probability for parton interactions raises the typical highest energy interaction.
 - Above some Hard Scatter energy there is typically complete overlap, yielding the Underlying Event plateau.
 - AMBT1 yields a higher probability for high-multiplicity events.
- Color Reconnection: $P_{Reconnect} = PARP[78]/(1+(PARP[77]*p_{StrAvg})^2)$
 - Reconnection shortens average Lund string lengths.
 - Shorter strings yield fewer, higher p_T hadrons.
 - \rightarrow AMBT1 yields a higher multiplicity from higher p_T strings.