Underlying Event and Diffraction With Charged Particles in ATLAS

Lauren Tompkins (UCB/LBNL) for the ATLAS Collaboration

Soft QCD

Non-Diffractive (ND) Single Diffractive (SD) Double Diffractive (DD)

- Majority of pp collisions belong to the realm of Soft QCD
- Soft QCD is non perturbative ⇒ theoretical understanding is driven by models fit to existing data
- Measurements presented here use inclusive Minimum Bias selection, then study charged particle properties in restricted phase space
- Why: to study subdominant processes of pp collisions
 - Underlying Event (UE): everything that is happening apart from the hard scatter
 - Important for understanding jet corrections, missing energy, etc.
 - Diffraction: p-p interactions with colorless exchange
 - Significant portion of total pp cross section, largely unconstrained
- Can use measurements to tune MC and improve models!

ATLAS Detector

ATLAS Detector

Pixel Detectors

TRT

Barrel SCT

Forward SCT

Inner Detector: \star 3 part tracker covering $|\eta| < 2.5$: \star Pixels:

★ 50x400 micron silicon pixels

★ 3 barrel layers, 2x3 endcap layers

★ Silicon Tracker (SCT)
★ Silicon microstrip detector

 \checkmark 3 double sided harmal layers $2x^{2}$

★ 4 double sided barrel layers, 2x9 endcap

★ Transition Radiation Tracker (TRT):

★Gaseous straw tube detector

★Avg 32 hits/track

ATLAS Detector

Barrel SC1

TRT

Pixel Detectors

Forward SCT

Minimum Bias Trigger Scintillator:

★ Detector specifically for MB events ★ 2cm thick polystyrene scintillators ★ Mounted on endcap calorimeter cryostat face plates (Z = 3.6 m) ★ Covers 2.09< $|\eta|$ < 3.84 ★ 8 modules in ϕ , 2 rings in η per side

Inner Detector: \star 3 part tracker covering $|\eta| < 2.5$: \star Pixels:

- **★** 50x400 micron silicon pixels
- \star 3 barrel layers, 2x3 endcap layers
- ★ Silicon Tracker (SCT)
 - **★** Silicon microstrip detector
 - \star 4 double sided barrel layers, 2x9 endcap
- ★ Transition Radiation Tracker (TRT):
 - ★Gaseous straw tube detector
 - ★Avg 32 hits/track

Underlying Event

- Remove the hard scatter, underlying event remains:
 - Multiple parton interactions (MPI)
 - Initial and final state radiation (ISR/ FSR)

Underlying Event

Leading Track $\Delta \phi$

- Remove the hard scatter, underlying event remains:
 - Multiple parton interactions (MPI)
 - Initial and final state radiation (ISR/ FSR)
- Most UE sensitive region is transverse to axis of hard scatter
 - Highest p_T charged particle = axis

Underlying Event

- Remove the hard scatter, underlying event remains:
 - Multiple parton interactions (MPI)
 - Initial and final state radiation (ISR/ FSR)
- Most UE sensitive region is transverse to axis of hard scatter
 - Highest p_T charged particle = axis
- Plot:
 - charged particle density
 - Σp_T density
 - $< p_T > \text{ of charged particles vs } N_{ch}$
 - std. deviations of the densities > 2 G

- 9.1 μ b⁻¹ used for 900 GeV analysis, 6.7 μ b⁻¹ for 7 TeV (good data quality required)
- MBTS triggered, good primary vertex (PV)
- At least 1 track with $p_T > 1$ GeV, $|\eta| < 2.5$, consistent with PV

- 9.1 μ b⁻¹ used for 900 GeV analysis, 6.7 μ b⁻¹ for 7 TeV (good data quality required)
- MBTS triggered, good primary vertex (PV)
- At least 1 track with $p_T > 1$ GeV, $|\eta| < 2.5$, consistent with PV
- Track Selection:
 - $p_T > 500$ MeV, $|\eta| < 2.5$, consistent with PV

- 9.1 μ b⁻¹ used for 900 GeV analysis, 6.7 μ b⁻¹ for 7 TeV (good data quality required)
- MBTS triggered, good primary vertex (PV)
- At least 1 track with $p_T > 1$ GeV, $|\eta| < 2.5$, consistent with PV
- Track Selection:
 - $p_T > 500$ MeV, $|\eta| < 2.5$, consistent with PV
- Correct for detector effects with track & event weights:

- 9.1 μ b⁻¹ used for 900 GeV analysis, 6.7 μ b⁻¹ for 7 TeV (good data quality required)
- MBTS triggered, good primary vertex (PV)
- At least 1 track with $p_T > 1$ GeV, $|\eta| < 2.5$, consistent with PV
- Track Selection:
 - $p_T > 500$ MeV, $|\eta| < 2.5$, consistent with PV
- Correct for detector effects with track & event weights:

- 9.1 μ b⁻¹ used for 900 GeV analysis, 6.7 μ b⁻¹ for 7 TeV (good data quality required)
- MBTS triggered, good primary vertex (PV)
- At least 1 track with $p_T > 1$ GeV, $|\eta| < 2.5$, consistent with PV
- Track Selection:
 - $p_T > 500$ MeV, $|\eta| < 2.5$, consistent with PV
- Correct for detector effects with track & event weights:

- 9.1 μ b⁻¹ used for 900 GeV analysis, 6.7 μ b⁻¹ for 7 TeV (good data quality required)
- MBTS triggered, good primary vertex (PV)
- At least 1 track with $p_T > 1$ GeV, $|\eta| < 2.5$, consistent with PV
- Track Selection:
 - $p_T > 500$ MeV, $|\eta| < 2.5$, consistent with PV
- Correct for detector effects with track & event weights:

- 9.1 μ b⁻¹ used for 900 GeV analysis, 6.7 μ b⁻¹ for 7 TeV (good data quality required)
- MBTS triggered, good primary vertex (PV)
- At least 1 track with $p_T > 1$ GeV, $|\eta| < 2.5$, consistent with PV
- Track Selection:
 - $p_T > 500$ MeV, $|\eta| < 2.5$, consistent with PV
- Correct for detector effects with track & event weights:

Multiplicity Density

Σp_T Density

Diffraction Enhanced Sample

- Diffractive processes: no exchange of quantum numbers
 - Creates rapidity gaps

Diffraction Enhanced Sample

 Diffractive processes: no exchange of quantum numbers

• Creates rapidity gaps

- at least 1 track with $p_T > 500$ MeV, $|\eta| < 2.5$
- Hits on *only* 1 side of MBTS $(2.09 < |\eta| < 3.84)$
 - Increases diffractive component from ~20% of event sample to ~90%

Diffraction Enhanced Sample

 Diffractive processes: no exchange of quantum numbers

• Creates rapidity gaps

• Event Selection:

- at least 1 track with $p_T > 500$ MeV, $|\eta| < 2.5$
- Hits on *only* 1 side of MBTS $(2.09 < |\eta| < 3.84)$
 - Increases diffractive component from ~20% of event sample to ~90%

Measure

- Ratio of single to either sided events: R_{ss}
- Track **kinematics** and multiplicities

Not yet corrected for detector effects!

R_{ss}

- R_{ss}:= Ratio of events with hits on only one side of the MBTS to all MBTS triggered events
 - Require a track with $p_T > 500$ MeV; $|\eta| < 2.5$
- Sensitive to relative diffractive cross section
 - All MC models prefer $\sigma_D/(\sigma_{ND}+\sigma_D) \sim 0.3$

Rapidity Gaps

- $\Delta \eta = |\eta_{MBTS} \eta_{trk}|$ is sensitive to gap structure
- Phojet shows best agreement
 - Favors dominantly SD contributions
- Pythia 6 worst overall agreement, Pythia 8 favors high $\Delta \eta$

 Phojet shows best agreement over full p_T range

- Pythia 8 overestimates at low p_T
- Pythia 6 underestimates for most p_T
- Pythia 6 diffractive component very soft
 - Agrees fairly well in high p_T tail where ND component dominates

Conclusions

- Soft QCD measurements in restricted phase space give access to sub-dominant processes
 - Important for understanding environment of hard interactions
- Underlying Event studies show MC tunes underestimate particle production and momentum in soft events, consistent with data for high leading track p_T
 - Higher statistics analysis available soon
- Diffractive enhanced sample favors Pythia relative cross sections and Phojet kinematics
 - Will be corrected for detector effects in the future
- There is much to be learned from soft QCD @ 7 TeV!

For more information Underlying Event Studies: ATLAS-CONF-2010-029 Diffraction Enhanced Studies:ATLAS-CONF-2010-048

Additional Slides

UE Systematic Uncertainties

Track Reconstruction	5%
Leading Track Reconstruction	1.0- 0.1%
Trigger and Vtx	< 0.1%
Unfolding Model Dependence	2.0%
Unfolding Stat. Dependence	0.1% to 15%

• Systematics dominated by 2 sources: tracking & unfolding

• Tracking:

- Majority of the uncertainty comes from knowledge of the detector material: 3% absolute uncertainty on the efficiency
- Unfolding:
 - Limited data and MC statistics were used to in the unfolding procedure
 - At high leading track p_T large bin-to-bin fluctuations are dominated by the MC statistics used in the unfolding (up to 15% systematic)

Present UE analysis uses bin-bybin unfolding after corrections for tracking efficiency and event loss are included

- Dominant effect was axis reorientation when losing the leading track
- Correction factors were derived from Pythia 6 MC09
- Phojet was used to check systematics, yielding at most 2% differences
- Effect of limited MC statistics in high p_T^{lead} region is dominant uncertainty

$m_i(x) = \frac{v_{true,i}(x)}{v_{reco,i}^{corr}(x)}$ is uses bin-by-

 $\Delta \phi$ between Leading and Subleading Track [rad]

$$\varepsilon_{\text{stat}}(\mathbf{x}) = \varepsilon_{\text{true}}(\mathbf{x})$$
$$\varepsilon_{\text{syst}}(\mathbf{x}) = \left| \varepsilon_{\text{true}}(\mathbf{x}) - \varepsilon_{\text{reco}}^{\text{corr}}(\mathbf{x}) * \frac{\mathbf{v}_{\text{true}}(\mathbf{x})}{\mathbf{v}_{\text{reco}}^{\text{corr}}(\mathbf{x})} \right|$$

Diffraction Analysis Systematics

- Dominant source of systematic uncertainty: Data/MC MBTS agreement
 - Detector simulation does not model some of the inefficiencies
- Tracking efficiency systematic dominated by knowledge of material
 - 3% absolute uncertainty on avg. efficiency
- Beam background and noise contamination found to be negligible

Source	% of R _{ss}
Track Reconstruction	3%
MBTS Data/MC Agreement	14%
Beam Background	<.1%
Noise Contamination	<.1%

Trigger & Vertex Efficiency

- Single arm MBTS trigger is highly efficient for events with at least 1 track* with $p_T > 500$ MeV
 - Reduced to 97% for events with 1 track with $p_T > 100$ MeV
- Vertex finding 89% for events with one selected track*, > 99% for events with 2
 - Vertex requirement only applied to UE analysis

Tracking Efficiency

Systematic Uncertainty	Systematic		
Truth Primary Definition	$\pm 0.4\%$		
Track Selection	$\pm 1\%$		
Material	$\pm 3\%$		
Alignment	$\pm 1\%$		
SCT Extension	$\pm 6\%~(2.2 < \eta < 2.5)$		
	$\pm4\%~(1.6 < \eta < 2.2)$		
Particle Composition	$\pm 0.2\%$		
Resolution	$\pm 1\% \ (0.5 < p_{\rm T} < 0.6 \ {\rm GeV})$		
	$3.8 \% (p_{\rm T} > 0.6 {\rm GeV}, \eta = 0)$		
Total	3.9 % (0.5 < $p_{\rm T}$ < 0.6 MeV, $\eta = 0$)		
	7.1 % ($p_{\rm T}$ > 0.6 MeV, 2.4 < η < 2.5)		

- Efficiency uncertainty dominated by material knowledge
- At high eta, have additional uncertainty due to reconstruction errors arising from large extrapolation distance and high material density.

It and Diffraction with ATLAS pkins, August 11th, 2010

Cross Sections & Acceptances

Generator	$\sigma_{DD} (\mathrm{mb})$	$\sigma_{SD} (\mathrm{mb})$	$\sigma_{ND} (\mathrm{mb})$	$\sigma_{inel} (mb)$	$(\sigma_{SD} + \sigma_{DD})/\sigma_{inel}$
Pythia	9.3	13.7	48.5	71.5	32.2%
Phojet	3.9	10.7	61.6	76.2	19.2%

Generator	A_{1-trk}^{DD}	A_{1-trk}^{SD}	A_{1-trk}^{ND}
Pythia6	39.2%	37.0%	97.5%
Pythia8	50.1%	55.6%	97.3%
Рнојет	52.2%	63.7%	95.9%

Table 1: Acceptances for events to have at least one track with $p_T > 500 \text{ MeV}$ and $|\eta| < 2.5$ for PYTHIA6, PYTHIA8 and PHOJET for double-diffractive (DD), single-diffractive (SD) and non-diffractive (ND) events at $\sqrt{s} = 7$ TeV.

Generator	DD		SD		ND	
	A_{any}^{DD}	A_{ss}^{DD}	A_{any}^{SD}	A^{SD}_{ss}	A_{any}^{ND}	A_{ss}^{ND}
Pythia6	97.2%	23.9%	97.7%	20.7%	99.9%	0.7%
Pythia8	100%	27.0%	100%	22.9%	100%	0.1%
Phojet	97.9%	14.2%	97.8%	22.0%	100%	0.5%

Table 1: Acceptances for events with activity in either side of the MBTS, A_{any} , and on only one side of the MBTS, A_{ss} , for events at $\sqrt{s} = 7$ TeV with at least one track with $p_T > 500$ MeV and $|\eta| < 2.5$ for PYTHIA6, PYTHIA8 and PHOJET for double-diffractive (DD), single-diffractive (SD) and non-diffractive (ND) events.

Additional Plots

UE: Δφ @ 900 GeV

UE: Std. Deviation of N_{ch}

UE: Std. Deviation of Σp_T

UE: $\langle p_T \rangle$ vs. N_{ch}

Diffraction: N_{ch}

Diffraction: p_T Spectrum

Diffraction: $\Delta \eta$

