Understanding MET at CMS in view of SUSY

Gheorghe Lungu
The Rockefeller University

“Implications of First LHC Data”
joint Berkeley-MIT workshop
MIT August 10-13 2010
Introduction

- MET measures the energy imbalance in the plane transverse to the beam axis
 - consequence of the law of energy conservation

- Sources
 - particles escaping detection (SM and beyond)
 - detector resolution \Rightarrow energy mismeasurement
 - detector malfunction, beam halo, cosmic rays

- Useful quantity to commission the detector

- Provides a great discriminant in the search for new physics
CMS detector

Azimuthal angle: ϕ
Polar angle: θ
Pseudorapidity: $\eta = -\ln \tan(\theta/2)$
MET algorithms in CMS

Generic definition \(\vec{\not{E}}_T = - \sum_{\text{particles}} (p_x \hat{i} + p_y \hat{j}) \)

Depending on what is used as “particles” we have:

- **CaloMET** = based on calorimeter towers
 - traditional definition
- **tcMET** = tracks replace matched calorimeter towers
 - take advantage of the better tracker momentum resolution
- **pfMET** = based on Particle Flow reconstruction
 - improved resolution due to particle identification
- **MHT** = based on reconstructed jets
 - more robust against detector noise and pile-up effects
Cleaning-up the events

Select good collisions

• ≥ 1 well identified primary vertex
• vertex z-position < 15 cm away from center of detector
• > 25% fraction of high-purity tracks if $N_{\text{tracks}} < 10$
 • removes events where bunches of particles cross detector longitudinally

Beam Halo removal

• identify muons going parallel to the beam
• use CSC muon detectors
• $1 - 2 \times 10^{-5}$ fraction removed
 • will increase with beam intensity

CMS preliminary 2010
\(\sqrt{s} = 7 \text{ TeV} \)
Remove anomalous signals based on:

- unphysical charge sharing between channels
- timing and pulse shape information

This excludes 0.003% of all minimum bias events
• Good agreement with simulated minBias events using Pythia 8
 • Monte Carlo simulation normalized to data

• CaloMET(left), tcMET(middle), pfMET(right)

• Events with MET > 60 GeV studied in more detail

• Cleaning procedures can and will be improved
Data vs Simulation - DiJets

- Event topology closer to those used in searches
 - require two leading jets $P_T > 25$ GeV, $|\eta| < 3$
- Simulation is more reliable for this production
 - Good agreement between data and simulation in this sample as well
Energy scale corrections

- **Non-compensating calorimeter leads to energy under-measurement** (CaloMET is affected the most)

- **type-I correction** \Rightarrow vector sum of transverse momentum of jets
 - apply jet energy corrections using dijet (η dependence) and photon + jet (absolute scale) events
 - use jets with EM fraction < 0.9 and $P_T > 20$ GeV

- **type-II correction** \Rightarrow soft jets unaccounted in type-I and unclustered energy
 - from simulated $Z \rightarrow$ ee events
Compare the resolutions for CaloMET, tcMET and pfMET in data and simulation

- require two leading jets $P_T > 25$ GeV, $|\eta| < 3$
- MET resolution = σ of Gaussian fit to calibrated $\text{MET}_{x,y}$
 - calibrate MET to photon ET in photon+jets events
- show dependence on SumET calculated with particle flow algorithm
 - pfSumET calibrated particle level using Pythia

pfMET has best resolution

Data & simulation agree well
Many searches for new physics beyond SM use multijet samples
MET seems unaffected by jet multiplicity
Search channels are defined based on event content ⇒ less model dependent

- fully hadronic = jets + MET
- lepton + jets + MET
- dilepton + MET
- trilepton + MET
- photons + MET

Focus on estimating the SM background using data-driven methods

Results with first data in SM dominated regions

MET is used for background modeling and for discrimination
QCD suppression

- **QCD background can play a major role in the hadronic searches**
 - small intrinsic MET, but high cross-section and resolution effects make up for it
- **Use angle between MHT and jets to suppress it:**
 - $\Delta\phi^* > 0.5$ could efficiently reduce QCD
 \[
 \Delta\phi^* \equiv \min_{j\neq k} \left(|\Delta\phi(\vec{p}_k, - \sum_{j\neq k} \vec{p}_i)| \right)
 \]
- Similar behavior between samples with 2 jets and ≥ 3 jets

$\sqrt{s} = 7$ TeV, 12 nb$^{-1}$

CMS preliminary

Gheorghe Lungu

MIT Workshop Aug-13-2010
Control QCD and fake MET

- Look at the imbalance between tracks in the transverse plane = MPT
 - neutrals are missing so the magnitude of MPT will be wrong, but the orientation is useful
 - For QCD expect angle between MPT and MHT be flat, while peaking at 0 for real MET
 - Useful to suppress/predict QCD as well as to reduce the calorimeter noise
Predicting QCD contribution

- Build MET templates from multijet events
- Bin in HT and \(N_{\text{jets}} \)

- Test this in photon+jets events (\(P_T^{\gamma} > 15 \) GeV)
- Use PF reconstruction
- Good agreement between observation and prediction
 - \(N^{\text{OBS}} = 11, N^{\text{PRE}} = 12.5 \)

\[\text{MET} (\text{GeV}) \]

\[\text{Events} / 5 \text{ GeV} \]

\[\text{CMS preliminary, 65 nb}^{-1} \text{ at 7 TeV} \]

- \(\gamma + \geq 3 \) jets data
- Template prediction
QCD in diphoton+MET events

- Select a sample with 2 non-isolated photon candidates
- Weigh sample such that P_T of diphoton system matches that of the signal sample
- Normalize the MET distribution to the yield in the signal region with MET < 10 GeV

- **Good agreement between observation and prediction**
 - $N^{\text{OBS}} = 4$ (MET > 20 GeV)
 - $N^{\text{PRE}} = 4.2 \pm 1.5$ (MET > 20 GeV)
Conclusions

- CMS has a good understanding of MET
- remarkable agreement between data and simulation
- performant reconstructing algorithms
- SUSY searches use a variety of tools to measure MET
- focus on data-driven approaches
- alternative methods cross-checking each other
- good description of SM contribution
- More data on the way ⇒ expect improved results