CMS W/Z Cross-Section Measurements $@\sqrt{s} = 7 \text{ TeV}$

Jeremy Werner (Princeton University) on Behalf of the CMS Collaboration Berkeley/MIT Implications of First LHC Data Workshop @ MIT Aug 12, 2010

CMS

Objectives of W/Z Physics @ CMS

- First observable (measurable) EWK processes @ the LHC
- Well understood \rightarrow Benchmark for detector performance
 - Iepton reconstruction and (qd) 10 CMS preliminary 2010 identification CDF Bun II D0 Bun I UA2 calibration point for UA1 Z → I*I detector/analysis techniques pp 10³ **Precision tests of perturbative QCD** pp and PDFs W and Z as a luminometer 10² Theory: FEWZ and MSTW08 NNLO PDFs CMS points do not include luminosity uncertainties.

W and Z production are standard candle processes

10 Collider energy (TeV)

Samples – Data and Monte-Carlo

- Monte-Carlo:
 - EWK processes POWHEG (NLO)
 - QCD and ttbar PYTHIA (LO)

4

Electron ID and Selection

Dedicated Trigger ($P_{\tau} > 15 \text{ GeV}$)

+

 $\begin{aligned} \text{PbWO}_{_4} \text{ ECAL clusters of energy deposition} \\ \text{P}_{_{T}} &> 20 \text{ GeV} \\ |\eta| &< 1.4442 \text{ (barrel) OR } |\eta| &> 1.566 \text{ (endcap)} \end{aligned}$

+

Track Matching (deal w/ bremm and reduce backgrounds)

÷,

Shower profile cuts (H/E, $\sigma_{i\eta i\eta}$, $\Delta \eta$) AND Isolation cuts (Track+Ecal+Hcal)

Electron ID and Selection

0

0.05

0.1

0.15

H/E EB

6

Muon ID and Selection

+

Muon Chamber AND Track based $P_{\tau} > 20 \text{ GeV}$ $|\eta| < 2.1$ (2.4 for one leg of the Z)

+

$$N_{\rm HITS}$$
 , $N_{\rm CHAMBERS}$, $\chi^2/DOF < 10$

+ Isolation cut (Track+Ecal+Hcal)

MET is reconstructed using a particle flow algorithm combining calo energy and tracks to get maximal resolution

Minimum Bias

Dijets: $P_{\tau} > 25$ GeV, $|\eta| < 3$

W Signal Extraction

Electron

Yield from simultaneous fit of S+B to data MET distro N = 818 ± 27

Muon

Yield from simultaneous fit of S+B to data M_{τ} distro N = 800 ± 31

Z Signal Extraction

Muon

Electron

 $60 < M_{ee} < 120 \text{ GeV}$

Electron Channel Systematics

Source	W channel (%)	Z channel (%)
Electron reconstruction/identification	6.1	7.2
Trigger efficiency	0.6	-
Isolation efficiency	1.1	1.2
Electron momentum scale/resolution	2.7	-
$E_{\rm T}$ scale/resolution	1.4	-
Background subtraction	2.2	-
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.3	1.3
TOTAL (without luminosity uncertainty)	7.7	7.7
Luminosity	11.0	11.0

Lumi systematic dominates

Muon Channel Systematics

Source	W channel (%)	Z channel (%)
Muon reconstruction/identification	3.0	2.5
Trigger efficiency	3.2	0.7
Isolation efficiency	0.5	1.0
Muon momentum scale/resolution	1.0	0.5
$\not\!$	1.0	-
Background subtraction	3.5	-
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.4	1.6
TOTAL (without luminosity uncertainty)	6.3	3.8
Luminosity	11.0	11.0

Lumi systematic dominates

Cross-Section Results

Cross-Section Results

W lepton charge asymmetry, W+jets, and luminosity

W lepton charge asymmetry

W lepton charge asymmetry

W+jets

W+jets is a large background for many searches

Same W selections as before, but now require $M_{\tau} > 50 \text{ GeV}$ and ≥ 1 jet having $P_{\tau} > 10 \text{ GeV}$

Infrared safe Anti-kt Jet clustering with ∆R= 0.5

W+jets

W and Z bosons as a luminometer

$$N_{Z/\gamma^*}^{\rm obs} = \sigma^{\rm tot} \operatorname{BR}(Z/\gamma^* \to \ell^+ \ell^-) A_{Z/\gamma^*} \int \mathcal{L} dt.$$

A - theoretical and experimental acceptance after all selection criteria (~3% (theory) + experimental systematic)

 $\sigma\times {\rm BR}$ - cross-section \times branching ratio - known theoretically (~4% systematic)

<u>Absolute Calibrator</u>: At $\int \mathscr{L} dt = 1 \text{ pb}^{-1} \exp t 400 (4000) Z (W)$ bosons per lepton channel

<u>Real-Time Monitor</u>: At $\mathscr{L} = 10^{33} \text{ cm}^{-2} \text{s}^{-1} \text{ expect 10}$ (100) Z (W) bosons per lepton channel every 30 seconds

Conclusions

- Presented early W and Z cross-section measurements at CMS
 - Consistent with the Standard Model
- These EWK processes are standard candles
 - Agreement between data and Monte-Carlo
 - Testament to CMS being a beautiful detector and the collaboration being prepared to leverage it for physics analysis
- Outlook
 - Ready to make precision EWK measurements
 - EWK processes starting to be used as calibration points
 - W and Z bosons will be a luminometer

Backup – Event Displays

W→ev

 $W \rightarrow \mu v$

CMS Experiment at LHC, CERN Run 133875, Event 1228182 Lumi section: 16 Sat Apr 24 2010, 09:08:46 CEST

Muon $p_T = 38.7 \text{ GeV/c}$ ME_T = 37.9 GeV M_T = 75.3 GeV/c²

CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST

Electrons $p_T = 34.0, 31.9 \text{ GeV/c}$ Inv. mass = 91.2 GeV/c²

