
A hybrid system for monitoring & automated

recovery @ Glasgow Tier-2 cluster

Dr. Emanuele Simili et al. 20 May 2021

We have been looking at how an increased level of automation can allow

significantly more CPU-power to be delivered with the existing staff-effort.

Most sites already use all sort of automation tools, from system

provisioning, remote management, monitoring and issue tracking. This

allows WLCG sites to run many instances with relatively little manpower.

For this project we have developed an automated recovery system that

can resolve the most common issues, such as a disk clean-up or a

system reboot, creating a Tier-2 cluster that is more resilient, more

efficient and requires less human intervention.

Motivation

• Glasgow Tier2 site description

• Cluster Monitoring & Logging

• Alerts & Automation

• Visualization

• Conclusions & Outlook

ScotGrid Glasgow:

Emanuele Simili, Gareth Roy (†), Gordon Stewart, Samuel Skipsey, David Britton

Outline

At present, ScotGrid Glasgow consists of:
• ~6000 CPU cores
• 4.9 PB storage (3.2 PB CEPH + 1.7 PB DPM) *
• 160 Gb/s internal network bandwidth

For a rough total of about 61 KHS06

ScotGrid Glasgow Site

AuthN / AuthZ

Job Requests

Authorised Jobs

H
T
C
o
n
d
o
r

ARC-CE

SCHEDD

ARC-CE

ce01

SCHEDD

ARC-CE

ce01

SCHEDD

ARC-CE

ce01

SCHEDD

ARC-CE

ce01

NEGOTIATOR

COLLECTOR

cassowary

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

STARTD

wn001

VACD

vac001

VACD

vac001

VACD

vac001

VACD

vac001

VACD

vac001

VPN

ARGUS

chocobox

Job Requests

SQUID

biscotti

SQUID

biscotti

NAT

stroop

NAT

stroop

W.A.N.

Certification

Authority

cephs01cephs01cephs01

cephs01cephs01cephc01

C
E
P
H

 S
E

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

- We have a standard ARC + HTCondor job submission system

- We also have a dynamic provisioning system (VAC), as an alternative

to conventional Grid jobs, providing IaaS to LHCb and other experiments

Cluster Map

As a site of significant size, we use many sys-admin empowering tools:

• A network provisioning system (PPE PiXiE)

• A remote management tool (Ansible)

• A central monitoring & logging system (PLG)

Automation Tools

And we have invested quite some time in preparing such environments…

Create a new workernodes (assuming node 00x is cabled and plugged in):

➢ Fill in MAC, IP and HostName (in Ansible), then run the play-book to update the network

nedit roles/dhcp/files/hosts.conf roles/dnsmasq/files/10.0.0.0_8

ansible-playbook update_networking.yml

➢ Create a PXE system profile, then boot the machine to install OS

nedit systems/nodes/wn00x.yml

systemctl restart pxecli

➢ Finally run ansible to install the software and configure the workernode

ansible-playbook -l wn00x workernodes.yml

Add a new VO to the standard job submission system:

➢ Fill in the VO coordinates in a proper Ansible role, then run it

cp -r roles/vo-template roles/vo-xxx

nedit roles/vo-xxx/files/xxx.grid-mapfile

ansible-playbook add_vo.yml -extra-vars “vo=xxx”

Clean CVMFS cache and reboot node 00x:

➢ Just run the ansible play-book

ansible-playbook -l wn00x cleanCVMFS.yml

Example Procedures

Our system is built on Prometheus, Loki and Grafana (PLG)

• Metrics are exported by node_exporter (installed on nodes) and
collected by a central Prometheus instance

• Logs are exported by PromTail (nodes) and collected by Loki (central)

• Data visualization and querying is done by Grafana, which pulls data
from both Prometheus and Loki

• Alert are sent out by AlertManager, installed on the Prometheus
server, and received by AM-Executor, installed on the configuration
management server that also runs Ansible

• Long term storage of metrics is done by VictoriaMetrics, installed on
the same server as Loki to take full advantage of the large storage

Monitoring & Logging (1)

other servers

PromTail

node_exporter

other servers

PromTail

node_exporter

victoria

M: 24 cores, 16Gb RAM, 50Tb HD

VictoriaMetrics

Loki

speculaas

VM: 2cores, 4Gb RAM

Grafana

gingersnap

VM: 6cores, 40Gb RAM, 500 Gb HD

Prometheus

AlertManager

W
o
rk

e
rN

o
d
e
s

&
 V

A
C
s

S
e
rv

e
rs

logs

metrics

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

others

PromTail

node_exporter

logs

metrics

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

wn001

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

wn001

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

PromTail

node_exporter

vac001

alerts

storage

S logs

S metricsfoithong VM

AM-Executor

Ansible

Monitoring & Logging (2)

node_exporter produces by default a large set of metrics
(e.g., CPU load, network activity, disk I/O, …)

And it can be further customised with ad-hoc metrics:

Metric Purpose Tool

Temperature HD check for overheat S.M.A.R.T. tools

Temperature CPU check for overheat IPMI tools

HTCondor jobs stats check the status and ownership of running jobs condor_status

VAC jobs stats check the number and status of virtual machines check-vacd

Running processes runtime and resource usage ps + grep

Number of Reboots static counter to keep track of unexpected restarts cron job

Static info check for unexpected changes in hardware (e.g.,

memory bank fail)

lscpu, vmstat , lsblk

Exported Metrics

PromTail tails the content of local logs and sends it to a central Loki.

We have chosen this tool (instead than the widely spread ElasticStearch)

because:

• it well integrates with Grafana

• it is very easy to set-up …

Logs to scrapes are specified in the

configuration (we scrape default system

logs* and specific service logs)

* we do not export the journal because it clogs the system

Exported Logs

Alerts are generated according to the outcome of conditional tests involving

metrics or queries against certain criteria. Both Prometheus and Loki* can

be configured to trigger alerts when a custom set of conditions is met.

Alerts are handled and sent out by the

AlertManager …

… and are received by the AM-Executor,

which performs some pre-encoded actions.

* Loki’s alert system is new in v2.0 and uses a specific
plug-in (ruler), which in turns calls AlertManager …

Alerts & Automation (1)

victoria

M: 24 cores, 16Gb RAM, 50Tb HD

VictoriaMetrics

Loki

gingersnap

VM: 6cores, 40Gb RAM, 500 Gb HD

Prometheus

AlertManager

alertsfoithong

AM-Executor

Ansible

actions

Prometheus

Loki

AlertManager

Ruler

AM-Executor SMS

expressions

conditions

queries

web-hooks

scripts

@ Sys-Admin

Ansible

logs

metrics

actions

MatterMost

email

In summary, these are the stages of an alert :

0) Prometheus or Loki verifies a test condition and triggers AlertManager

1) An alert messages is generated by AlertManager and sent as a web-hook

2) AM-Executor is an HTTP server that listens for alerts, parses their content, and

triggers custom commands matching the alert type and source

3) By running AM-Executor on the same management server that runs Ansible, we

can harness the full power of Ansible remote management, with a variety of play-books

prepared beforehand

Alerts & Automation (2)

case-switch to assign an action
case $AM_ALERTNAME in

InstanceFull) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_cvmfsclean.yml -b
echo "> ansible-playbook -l $AM_NODE do_cvmfsclean.yml -b" >> $AM_LOGFILE
;;

CpuHot) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_shutdown.yml -b
echo "> ansible-playbook -l $AM_NODE do_shutdown.yml -b" >> $AM_LOGFILE
;;

HdHot) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_shutdown.yml -b
echo "> ansible-playbook -l $AM_NODE do_shutdown.yml -b" >> $AM_LOGFILE
;;

NodeLazy) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_clean-enable.yml -b
echo "> ansible-playbook -l $AM_NODE do_clean-enable.yml -b" >> $AM_LOGFILE
;;

VacLazy) ansible $AM_NODE -m reboot -b
echo "> ansible -l $AM_NODE -m reboot -b" >> $AM_LOGFILE
;;

WayTooHot) ansible-playbook /etc/ansible/playbooks/do_shutdown.yml -b
echo "> ansible-playbook do_shutdown.yml -b" >> $AM_LOGFILE
;;

TooHot) . /etc/am-executor/send_sms_alert.sh
echo "> . /etc/am-executor/send_sms_alert.sh" >> $AM_LOGFILE
;;

*) echo "Alert not recognised: $AM_ALERTNAME !" >> $AM_LOGFILE
;;

esac

AM-Executor
AM-Executor is configured with a custom script that defines the action to

be taken based on the alert:

- Actions implemented in a case-switch

- Multiple alerts handled in a for loop

- The script can call an Ansible play-

book or trigger another script (SMS)

- Privileges for Ansible remote

management are set by a

password-less SSH key *

* This can raise security concerns, and

we’ll use a better solution in the future

Alert Conditions

Example (instance full):

Prometheuswn001

filesystem_free = 0.5 Gb
filesystem_size = 50 Tb

filesystem_free / filesystem_size < 0.02

AlertManager

InstanceFull{“wn001”}

AM-Executor

ansible-playbook -l wn001 cvmfsclean.yml

Ansible

So far, only a limited

number of alert-

cases have been

implemented:

Example Alert

One of the disk has filled-up and an ‘Alert’ message is generated (after 10 min):

Alert Pending

Alert Firing

Alert Solution

The disk has been cleaned and a ‘Resolved Alert’ message is sent (after 10 min):

Ansible Logs

This system is relatively new (first working prototype in January 2021) and
it is still under critical evaluation*:

• We have an alerting system that can send emails/SMS in case of emergency,
and few simple recovery actions that run automatically (clean HD, reboot, ...)

• Next, we want to identify more complex alerts based on combinations of
metrics and define multi-step recovery actions, such as re-provision a node

• Also, it would be nice to extend the monitoring actions to network stats

• Eventually, we would like to experiment with ML Anomaly Detection systems

• We plan to engage other GridPP sites to come up with the best practices for
monitoring and automated fault recovery, as well as get involved with the
CERN Operational Intelligence group

* It is well known that giving full control to the machines without proper evaluation will eventually lead to Skynet

Conclusions & Outlook

Dr. Emanuele Simili et al. 20 May 2021

Thanks for listening.

ElasticFlow
We did some experimenting with ElasticSearch modules to analyze network flows from
switches (sFlow)

… but this is another story.

Example Logging

HTCondor logs:

/var/log/condor/

As an example, these are the bits in the PromTail configuration
(promtail.yml) that export general and HTCondor logs:

General Logs (system messages)

ClusterView Dashboards

Running jobs per VO

Over 50 graphs about CPU, Memory, Disks, Networking ...

Log Queries

Example query: rate of HTCondor
error messages from all workernodes

MatterMost Channel

Ansible repository on our internal Git:

~70 Ansible roles

~50 Ansible play-books (incl. maintenance)

Git & Wiki

Internal wiki with

detailed procedures

and code snippets

for cluster built:

~50 pages

Glasgow Tier-2 Cluster
Submission system consists of a few hundred (*) nodes managed by NorduGrid ARC, ARGUS and HTCondor.

It provides computing power to LHC experiments (ATLAS, CMS) and non-LHC experiments (LIGO, CLAS12, …).

• We have 4 ARC-CE server for job submission: ce01, ce02, ...

• We have ~300 * physical workernodes (~80 connected): wn00x

• W have 1 ARGUS for user authentication and authorization

• We have 1 HTCondor manager which collects scheduled jobs

• We have 2 Squids acting as a cache for CVMFS

• We have 2 NAT servers for communicating with the outside world

• We have ~20 VAC nodes *: vac00x

• We have a local Storage Element (SE) **

• And, of course, everything is within our private VPN (WireGuard)

* Beside the conventional Grid submission system, the Glasgow site also runs a smaller number of VAC machines to

provide an Infrastructure-as-a-Service (IaaS) cloud for various other experiments, including LHCb.

** The Storage Element is composed of three sets of physical machines running Ceph, including about 20 dedicated

storage machines or disks (cephd0x), six physical caches (cephc0x) and three entry points or servers (cephs0x).

UKI-SCOTGRID-GLASGOW
• Part of the GridPP collaboration

providing resources to the Worldwide
LHC Compute Grid (WLCG).

• One of 19 institutions comprising 4
distributed Tier-2 sites (SCOTGRID,
NORTHGRID, SOUTHGRID and LT2).

• Part of the SCOTGRID Distributed
Tier-2 including Glasgow, Edinburgh
and Durham Universities.

We are here

