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Liquid Argon TPC (LArTPC)

LArTPC is a key detector technology for DUNE

many next-gen neutrino experiments SO SR
e rich and precise topology info. -——
e calorimetry info. o=

Fermilab
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LArTPC Simulation

>

Ramo's theorem: i =—q E - v,

2D: approximate translational symmetry along the wire direction

LArTPC wire-readout measures induced charge ® response

M(t',2") = / / R(t,t',xz,x") - S(t,x)dtdx + N(t',z")

Long-range and position-

Energy depo + diffusion
dependent field response

+ rasterization
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LArTPC Signal Processing

Signal Processing (SP) of LArTPC resolves charge from the original

measurement:
Fwi,wy) - M(wy,wy)

Wi, Wy ) ~ -~ — IFT S(t,x

Sl Rlnwy)  —s 500
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Validation and Performance
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https://indico.bnl.gov/event/7024/contributions/32749/

Wire-Cell Toolkit and LArSoft LAY &5
Soft S

Wire-Cell

Wire-Cell Toolkit (WCT) is a software package initialized for LArTPC
e algorithms: simulation, signal processing, reconstruction and visualization.
e data-flow programming paradigm
e modular design; can port different modules relatively independently
e works in both standalone mode and as plugin of LArSoft

LArSoft is a C++ software framework for many neutrino experiments using LArTPCs
e modular design
e infrastructures + algorithms
e central hub of the LArTPC software community
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Accelerating Needs
Computing time breakdown for the DNN ROl finding task

Generator
Offline: both traditional and ML based 29  Geantd
Network 3%
ML analysis examples: T’a'“'“gh(so
e DNN ROI finding: JINST 2021 16 P01036 epoch)

o 500 APA data e

o total 16 hours
o Sim & SigProc - 9.4 CPU*hour

e DUNE CVN, Phys.Rev.D 102 (2020) 9, 092003
o 3 million APA data/9 million images

Online: TPC based online trigger
o supernova neutrino burst detection

Motivation to search for heterogeneous computing
solutions, e.g. HPC
Simulation
& Signal
Processing
62%

Refer to P. Laycock’s talk for more on DUNE computing
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Wire-Cell Simulation Major Steps

Three major steps of LArTPC simulation with Wire-Cell - a representative workflow
1. Rasterization: depositions — patches (small 2D array, ~20x20)
o # depo ~100k for cosmic ray event
2. Scatter adding: patches — grid (large 2D array, ~10kx10k)
3. FFT: convolution with detector response

Convolution theorem:

rasterization and scatter adding convolution in time/space domain

X rasterize M(t, x) = f f Rt—t,x—x")-S{,xd'dx + N(t,x),
- __ind multiplication in frequency domain
i v~ N— MEE 1 S(t,x) —)FT § (wp, wy),
> T T 1 M(C(),, wx) = R(wt’ wx) ’ S(Cl)[, wX)’
drift t

M(w;, wy) IFT M(t, x).
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Initial CUDA porting

First CUDA porting focused on the Rasterization step:
e 3x speedup for the Rast. step
o parallelization at single patch level
o RNG factored out — random number pool
e simulation results statistically consistent with CPU version

9.0 . .
Intel i9-9900K, NVIDIA RTX 2080Ti
—e— trackdepo-87/ref.h5, /100/frame_orig0, 2140 80
- —— 87/cuda-switch-index-calc.h5, /0/frame_orig0, 2140 —_ 7.0
g g
waveform validation 2.6.0
1800 )
E 5.0
CPU s
§ 4.0
CUDA 33.0
]
a3 2.0
- 1.0 .
1000 0.0 -
DR — Total Rasterization  Scatter FFT
w0 s Adding

m CPU m CUDA (Rast. Only)
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HEP-CCE and PPS

e HEP-CCE: High Energy Physics Center for Computational

Excellence
o A 3-year pilot US DOE project to develop solutions for HEP
experiments to efficiently utilize diverse HPC resources
o  Covers 6 experiments in Cosmic, Intensity and Energy Frontiers.
o Involves four US DOE labs: ANL, Fermilab, LBNL and BNL.
e PPS: Portable Parallelization Strategies
o  Focused on performance portability
o  Evaluation of Kokkos, SyCL, OpenMP, etc. as potential
portability solutions for HEP
o Use cases cover ATLAS, CMS and DUNE
e Started with Kokkos as the potential portability layer
o  Targets C++ applications
o Supports multiple hardware architectures through different
backends
o  Supports manual data management

For more details, see C. Leggett’'s Monday PM Plenary.

https://www.anl.gov/hep-cce
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Kokkos Porting Plan

Two stage porting strategy
1. partial porting - port only step 1, rasterization

2. full porting

a. more workloads for parallelization
b. batched device-host data transfer

scatter
depo:1 patch: add grid: FT grid:
Host | os:20 x 2 [* 200K 20 x 20 | 100K 10k x 10k [* 1 10k x 10k
| i
stage 1 v '
. depo:1 rasterize | patch:
Device 00S: 20 X 2 x 100k 50x20 ¢ 100k
depo:1 grid:
Host 11 os: 20 x 2 | 100K 10k x 10k |*
| 4
stage 2 y scatter '
. depo:1 rasterize | patch: add grid: FT grid:
Device || os: 20 x 2 |* 100K 20x20 [ 100K 10k x 10k |1 10k x 10k |©
BROOKHEVEN
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Developing Environment Setup

Standalone package: wire-cell-gen-kokkos
e clear interface to main Wire-Cell Toolkit and LArSoft
e minimum amount of code needs to be ported

Input data is provided in one of two ways:

e As JSON-serialized data to the standalone wire-cell executable

e Through LArSoft’s larwirecell package as a plugin to the art event-processing framework
The framework solution allows a more realistic presentation of input data to the signal-processing
algorithms.

Software dependencies
e LArSoft and Wire-Cell require a number of software packages (Boost, Geant, Python, etc.)
e This portability exercise was to be studied across several computing platforms (NERSC’s Cori,
BNL clusters, and private machines)
o Argues for a package delivery system that is portable.

Use Docker containers to run on multiple platforms.
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https://github.com/WireCell/wire-cell-gen-kokkos

Kokkos container images

Docker containers/images

e Images contain installations of all required
dependencies.

e A container is like an instance of an image.

e Images are layered in ways that allow for
extensibility.

e The most derived layer has Kokkos/CUDA
installations, possibly optimized for the host
architecture.

Development workflow
e Docker images are published to dockerhub,
and converted to Singularity or Shifter (Cori)
images.
e Kernels to be run on the GPU are compiled
inside the container.

Image hierarchy

CentOS 7

A

larwire

OS underpinnings

LArSoft, WireCell,
and their dependencies

/\

larwire-kokkos larwire-kokkos-amd
Serial, OMP, and CUDA Serial, OMP, and CUDA
backends backends, host-optimized
for AMD AVX

e Each jobis run inside a container with a computing environment that suits the platform under study.
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Random Number Generator (RNG) 40

— 3.5
230
Original serial CPU (ref-CPU) version: § ;(5)
e <random> 515
e gcc default: std::minstd_rand0 210
e Generate 1 number per use 0.5
0.0 _—
CUDA: (toal)
e curandGenerateNormal
e Random number pool
Kokkos: Box-Muller transform
o Kokkos Xorshift RNG from wikipedia
e Random number pool
e Box-Muller transform: Uniform — Gaussian O
A curand and Kokkos RNG (CUDA) are much faster than %
CPU one ;
A in principle, we do not need unique RN for each patch,
a large enough pool should also do the job
2021-05-20
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https://github.com/kokkos/kokkos/blob/master/example/tutorial/Algorithms/01_random_numbers/random_numbers.cpp
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

Scatter Adding

Initial
1.
2.

2021-05-20

attempts to do scatter adding with Kokkos
Kokkos::atomic_add
Kokkos::ScatterView

atomic_add scales better with OMP threads

ScatterView has better ST performance 0.5

equal performance for CUDA

Execution Time [sec.]
o
= o
(0] N

o
=Y

0.0

()

Unit test:

grid size: 1000 x 6000

patch size: 15 x 30

50k patches, avg. time for 10 executions

Intel i9-9900K, NVIDIA RTX 2080Ti

OMP, 1-thread OMP, 2-thread OMP, 4-thread OMP, 8-thread CUDA

Haiwang Yu, vCHEP 2021

W atomic_add m ScatterView
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FFT

Kokkos does not have a native FFT implementation or
official interface to the optimized vendor libraries (FFTW,
cuFFT) = Use wrappers

e Thanks to the synergia group for the helpful advices

cuFFT with cufftPlanMany performs 20x - 100x faster
than FFTW on the test platform.

e Most of the times we need to do batches of 1D

FFTs
e Previous FFTW version perform each one
sequentially
2021-05-20 Haiwang Yu, vCHEP 2021

Kokkos wrapper for FFTW and cuFFT

Unit test: 1D FFT for 1024 arrays per operation
x-axis is length of array

using cufftPlanMany

Intel i9-9900K, NVIDIA RTX 2080Ti
700

00
10 = BN l.

1024 4096 16384
B FFTW (ST) M cuFFTx50

Brooxuruen  2& Earmilab  HEP-CCE 16


https://synergia.fnal.gov/

Kokkos Porting Plan

Two stage porting strategy
1. partial porting - port only step 1, rasterization

2. full porting

a. more workloads for parallelization
b. batched device-host data transfer

scatter
depo:1 patch: add grid: FT grid:
Host | os:20 x 2 [* 200K 20 x 20 | 100K 10k x 10k [* 1 10k x 10k
| i
stage 1 v '
. depo:1 rasterize | patch:
Device 00S: 20 X 2 x 100k 50x20 ¢ 100k
depo:1 grid:
Host 11 os: 20 x 2 | 100K 10k x 10k |*
| 4
stage 2 y scatter '
. depo:1 rasterize | patch: add grid: FT grid:
Device || os: 20 x 2 |* 100K 20x20 [ 100K 10k x 10k |1 10k x 10k |©
BROOKHEVEN
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Stage 1

24-core AMD Ryzen Threadripper 3960X CPU
NVIDIA V100 GPU/AMD Radeon Pro VII GPU

4
Initial Kokkos porting follows original CUDA — 3.5
porting. o 3
e no need for major refactoring w25
e # concurrent workloads is small ~400 E 5
e results were not ideal 5 L
3
Nsight timeline analysis: ¢ 1 I
1. in between kernel and API calls, 0.5 I I I
Kokkos has extra 0 - L - H.. Ill Ill m
CudaDeviceSynchronization and S v o > > > > v
CudaStreamSynchronization éég k;PQ Q§§ @@% ,&@% ,&@% ,&@% ;}50
2. Kokkos parellel_reduce() kernels are ¢ N @QN @QN @QN @QN \&09
almost 3 times slower than CUDA &3;' qo qo qo qo ©
reduction kernels in this version R S Y
o too small workload only one block L R R
W Rasterization (total) m 2D sampling m Fluctuation

2021-05-20 Haiwang Yu, VCHEP 2021 Brooxuruen  2& Earmilab  HEP-CCE 18



Stage 2 Milestone

Boundle ~100k rasterizations together
(original total raserizations tasks become 2 parts)

e set_sampling_pre()

o

o O O

Prepare for 2D sampling

Currently serial ~0.085s

Working on parallelizing it

Expect good improvement in performance

e set sampling_bat()

o

©)
©)
©)

Single kernel for 2D samplings and fluctuations.

Include host/device data transfer

Use Kokkos Team ThreadsRange for CUDA
Use Kokkos ThreadVectorRange to enable
SIMD on OMP backend.

e CUDA backend ~10x better than before

2021-05-20
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24-core AMD Ryzen Threadripper 3960X CPU
NVIDIA V100 GPU/AMD Radeon Pro VII GPU

Timing for set_sampling_bat()

Kokkos Implementation with OpenMP, CUDA and HIP backends

= OpenMP = OpenMP w/ AVX = CUDA = HIP

0.125
0.100
0.075
0.050

- || II II I
0.000 II Il
1 2 4 8 16 32

NVIDIA AMD
V100 Radeon Pro
Vi

Execution Time [s]

# of CPU Threads /GPU Type

For GPUs, the actual kernel time are very small (<1ms)

Most time are on data transfers which will be absorbed in next step
when scatter_add and FFTs parts are implemented on device with
kokkos.



Stage 2 Full Prototype

Intel i9-9900K, NVIDIA RTX 2080Ti

Batched rasterization 9.0
8.0
Scatter Adding: major refactoring 7.0
e sparse — dense (Kokkos::View) 2 6.0
e 60x speed up 2.,
e no extra HtoD needed for FFT = 4'0
S
Kokkos FFT wrappers: g 3.0
e CuFFT (cufftPlanMany): 88x (CUDA) *2.0
1.0 I I
Total speedup: 46x (CUDA) o I L 1 L L B _
. . ref-CPU Full Stage Full Stage Full Stage Full Stage ref-CUDA Full Stage
*Full Stage 2 porting is not completely 20MP-1 20MP-2 20OMP-4 2OMP-8 2 CUDA

finished yet, some tuning undergoing. But
we expect the general trend should stay for
the final version.

B Total M Raterize M Scatter Add FFT
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Full Stage 2 Prototype

Intel i9-9900K, NVIDIA RTX 2080Ti

100
Batched rasterization

90

Scatter Adding: major refactoring 80

e sparse — dense (Kokkos::View) 70
e 60x speed up

e no extra HtoD needed for FFT

Speedup [x ref-CPU]

cuFFT (cufftPlanMany): 88x (CUDA)

60
50
40
30
Total speedup: 46x (CUDA) 20 I
10
*Full Stage 2 porting is not completely 0 —— II II ] I -

finished yet, some tuning undergoing. But ref-CPU  FullStage 2 Full Stage 2 Full Stage 2 FullStage2 ref-CUDA  Full Stage 2
we expect the general trend should stay for OMP-L — OMP2— OMP-4—  OMP8 cubA
the ﬁnal version Hm Total mRaterize mScatter Add FFT
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Porting Experience

2021-05-20

Found general optimization directions even without accelerating in the game
o factor out RNG
o sparse — dense

Major refactoring may be needed for code not initially designed considering parallel
accelerating
o significant improvement
o benefit for both portable and non-portable solutions
m larger workload, better data coalescence, less D-H transfer
m (portable in a different sense?)

Well organized D-H transfer is not as scary

Containerized development making the environment setup really easy for multiple platforms

Haiwang Yu, vCHEP 2021 Brooxuruen  2& Earmilab  HEP-CCE
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Future Plan

2021-05-20

Finish Kokkos porting for Wire-Cell Simulation
o optimizations
o validations

Port Wire-Cell Signal Processing

Better GPU utilization
o data batching
o Multi-Process Service

Explore more backends and portability solutions
o HIP
o SYCL, Parallel C++ STL

Applications:
o production with suitable hardware
o collaboration with online analyses

Haiwang Yu, vCHEP 2021
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Backups
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