
Portable Acceleration Solutions for
LArTPC Simulation Using Wire-Cell Toolkit

Haiwang Yu1, Zhihua Dong2, Kyle Knoepfel3, Meifeng Lin2, Brett Viren1 and
Kwangmin Yu2

1 Department of Physics, Brookhaven National Laboratory
2 Computational Science Initiative, Brookhaven National Laboratory
3 Scientific Computing Division, Fermi National Accelerator Laboratory

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 2

Liquid Argon TPC (LArTPC)
DUNE

SBN Program
LArTPC Signal Formation

LArTPC is a key detector technology for
many next-gen neutrino experiments

● rich and precise topology info.
● calorimetry info.

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 3

LArTPC Simulation

LArTPC wire-readout measures induced charge ⊗ response

⊗ ⊕ ⟶

Energy depo + diffusion
+ rasterization

Long-range and position-
dependent field response Noise Spectrum Final Signal

2D: approximate translational symmetry along the wire direction

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 4

LArTPC Signal Processing

Decon. w/o LF filter
Waveform ⟶ charge, dense

ROI:
Hit finding, sparsify

SP result:
Sparse, charge

Decon. w/ Tight LF

Decon. w/ Loose LF
ROI Finding ROINoise Filtering

+ 2D decon.Waveform data

Decon. w/o LF

SP Result

induction
plane

Signal Processing (SP) of LArTPC resolves charge from the original
measurement:

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 5

Validation and Performance

MicroBooNE Data, Induction plane

Time

Wire

Related publications
JINST 12 P08003
JINST 13 P07006
JINST 13 P07007
JINST 16 P01036

U plane
MC (black)

W plane
MC (black)

ProtoDUNE-SP
Average raw waveform: data vs. MC

ref link

https://indico.bnl.gov/event/7024/contributions/32749/

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 6

Wire-Cell Toolkit and LArSoft

Wire-Cell Toolkit (WCT) is a software package initialized for LArTPC
● algorithms: simulation, signal processing, reconstruction and visualization.
● data-flow programming paradigm
● modular design; can port different modules relatively independently
● works in both standalone mode and as plugin of LArSoft

LArSoft is a C++ software framework for many neutrino experiments using LArTPCs
● modular design
● infrastructures + algorithms
● central hub of the LArTPC software community

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 7

Accelerating Needs

Offline: both traditional and ML based

ML analysis examples:
● DNN ROI finding: JINST 2021 16 P01036

○ 500 APA data
○ total 16 hours
○ Sim & SigProc - 9.4 CPU*hour

● DUNE CVN, Phys.Rev.D 102 (2020) 9, 092003
○ 3 million APA data/9 million images

Online: TPC based online trigger
○ supernova neutrino burst detection

Motivation to search for heterogeneous computing
solutions, e.g. HPC

Refer to P. Laycock’s talk for more on DUNE computing

Computing time breakdown for the DNN ROI finding task

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE

Three major steps of LArTPC simulation with Wire-Cell - a representative workflow
1. Rasterization: depositions ⟶ patches (small 2D array, ~20×20)

○ # depo ~100k for cosmic ray event
2. Scatter adding: patches ⟶ grid (large 2D array, ~10k×10k)
3. FFT: convolution with detector response

rasterization and scatter adding Convolution theorem:
convolution in time/space domain

multiplication in frequency domain

8

Wire-Cell Simulation Major Steps

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 9

Initial CUDA porting

waveform validation

First CUDA porting focused on the Rasterization step:
● 3× speedup for the Rast. step

○ parallelization at single patch level
○ RNG factored out ⟶ random number pool

● simulation results statistically consistent with CPU version

Intel i9-9900K, NVIDIA RTX 2080Ti

10

HEP-CCE and PPS

https://www.anl.gov/hep-cce

● HEP-CCE: High Energy Physics Center for Computational
Excellence

○ A 3-year pilot US DOE project to develop solutions for HEP
experiments to efficiently utilize diverse HPC resources

○ Covers 6 experiments in Cosmic, Intensity and Energy Frontiers.
○ Involves four US DOE labs: ANL, Fermilab, LBNL and BNL.

● PPS: Portable Parallelization Strategies
○ Focused on performance portability
○ Evaluation of Kokkos, SyCL, OpenMP, etc. as potential

portability solutions for HEP
○ Use cases cover ATLAS, CMS and DUNE

● Started with Kokkos as the potential portability layer
○ Targets C++ applications
○ Supports multiple hardware architectures through different

backends
○ Supports manual data management

For more details, see C. Leggett’s Monday PM Plenary.

https://www.anl.gov/hep-cce
https://indico.cern.ch/event/948465/contributions/4323701/

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE

Two stage porting strategy
1. partial porting - port only step 1, rasterization
2. full porting

a. more workloads for parallelization
b. batched device-host data transfer

stage 1

stage 2

11

Kokkos Porting Plan

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 12

Developing Environment Setup
Standalone package: wire-cell-gen-kokkos

● clear interface to main Wire-Cell Toolkit and LArSoft
● minimum amount of code needs to be ported

Input data is provided in one of two ways:
● As JSON-serialized data to the standalone wire-cell executable
● Through LArSoft’s larwirecell package as a plugin to the art event-processing framework

The framework solution allows a more realistic presentation of input data to the signal-processing
algorithms.

Software dependencies
● LArSoft and Wire-Cell require a number of software packages (Boost, Geant, Python, etc.)
● This portability exercise was to be studied across several computing platforms (NERSC’s Cori,

BNL clusters, and private machines)
○ Argues for a package delivery system that is portable.

Use Docker containers to run on multiple platforms.

https://github.com/WireCell/wire-cell-gen-kokkos

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 13

Kokkos container images
Docker containers/images

● Images contain installations of all required
dependencies.

● A container is like an instance of an image.
● Images are layered in ways that allow for

extensibility.
● The most derived layer has Kokkos/CUDA

installations, possibly optimized for the host
architecture.

Development workflow
● Docker images are published to dockerhub,

and converted to Singularity or Shifter (Cori)
images.

● Kernels to be run on the GPU are compiled
inside the container.

larwire

larwire-kokkos larwire-kokkos-amd

CentOS 7

Image hierarchy

OS underpinnings

LArSoft, WireCell,
and their dependencies

Serial, OMP, and CUDA
backends

Serial, OMP, and CUDA
backends, host-optimized
for AMD AVX

● Each job is run inside a container with a computing environment that suits the platform under study.

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 14

Random Number Generator (RNG)
Original serial CPU (ref-CPU) version:

● <random>
● gcc default: std::minstd_rand0
● Generate 1 number per use

CUDA:
● curandGenerateNormal
● Random number pool

Kokkos:
● Kokkos Xorshift RNG
● Random number pool
● Box-Muller transform: Uniform ⟶ Gaussian

❏ curand and Kokkos RNG (CUDA) are much faster than
CPU one

❏ in principle, we do not need unique RN for each patch,
a large enough pool should also do the job

Box-Muller transform
from wikipedia

https://github.com/kokkos/kokkos/blob/master/example/tutorial/Algorithms/01_random_numbers/random_numbers.cpp
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE

Initial attempts to do scatter adding with Kokkos
1. Kokkos::atomic_add
2. Kokkos::ScatterView

● atomic_add scales better with OMP threads
● ScatterView has better ST performance

● equal performance for CUDA

Unit test:
grid size: 1000 × 6000
patch size: 15 × 30
50k patches, avg. time for 10 executions

15

Scatter Adding

Intel i9-9900K, NVIDIA RTX 2080Ti

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 16

FFT
Kokkos wrapper for FFTW and cuFFT
Unit test: 1D FFT for 1024 arrays per operation
x-axis is length of array
using cufftPlanManyKokkos does not have a native FFT implementation or

official interface to the optimized vendor libraries (FFTW,
cuFFT) ⟹ Use wrappers

● Thanks to the synergia group for the helpful advices

cuFFT with cufftPlanMany performs 20× - 100× faster
than FFTW on the test platform.

● Most of the times we need to do batches of 1D
FFTs

● Previous FFTW version perform each one
sequentially

Intel i9-9900K, NVIDIA RTX 2080Ti

https://synergia.fnal.gov/

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE

Two stage porting strategy
1. partial porting - port only step 1, rasterization
2. full porting

a. more workloads for parallelization
b. batched device-host data transfer

stage 1

stage 2

17

Kokkos Porting Plan

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 18

Stage 1

Initial Kokkos porting follows original CUDA
porting.

● no need for major refactoring
● # concurrent workloads is small ~400
● results were not ideal

Nsight timeline analysis:
1. in between kernel and API calls,

Kokkos has extra
CudaDeviceSynchronization and
CudaStreamSynchronization

2. Kokkos parellel_reduce() kernels are
almost 3 times slower than CUDA
reduction kernels in this version

○ too small workload only one block

24-core AMD Ryzen Threadripper 3960X CPU
NVIDIA V100 GPU/AMD Radeon Pro VII GPU

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 19

Stage 2 Milestone

Timing for set_sampling_bat()
Boundle ~100k rasterizations together
(original total raserizations tasks become 2 parts)

● set_sampling_pre()
○ Prepare for 2D sampling
○ Currently serial ~0.085s
○ Working on parallelizing it
○ Expect good improvement in performance

● set_sampling_bat()
○ Single kernel for 2D samplings and fluctuations.
○ Include host/device data transfer
○ Use Kokkos TeamThreadsRange for CUDA
○ Use Kokkos ThreadVectorRange to enable

SIMD on OMP backend.

● CUDA backend ~10x better than before For GPUs, the actual kernel time are very small (<1ms)
Most time are on data transfers which will be absorbed in next step
when scatter_add and FFTs parts are implemented on device with
kokkos.

24-core AMD Ryzen Threadripper 3960X CPU
NVIDIA V100 GPU/AMD Radeon Pro VII GPU

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 20

Stage 2 Full Prototype

Batched rasterization

Scatter Adding: major refactoring
● sparse ⟶ dense (Kokkos::View)
● 60× speed up
● no extra HtoD needed for FFT

Kokkos FFT wrappers:
● cuFFT (cufftPlanMany): 88× (CUDA)

Total speedup: 46× (CUDA)

*Full Stage 2 porting is not completely
finished yet, some tuning undergoing. But
we expect the general trend should stay for
the final version.

Intel i9-9900K, NVIDIA RTX 2080Ti

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 21

Full Stage 2 Prototype

Batched rasterization

Scatter Adding: major refactoring
● sparse ⟶ dense (Kokkos::View)
● 60× speed up
● no extra HtoD needed for FFT

cuFFT (cufftPlanMany): 88× (CUDA)

Total speedup: 46× (CUDA)

*Full Stage 2 porting is not completely
finished yet, some tuning undergoing. But
we expect the general trend should stay for
the final version.

Intel i9-9900K, NVIDIA RTX 2080Ti

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 22

Porting Experience

● Found general optimization directions even without accelerating in the game
○ factor out RNG
○ sparse ⟶ dense

● Major refactoring may be needed for code not initially designed considering parallel
accelerating

○ significant improvement
○ benefit for both portable and non-portable solutions

■ larger workload, better data coalescence, less D-H transfer
■ (portable in a different sense?)

● Well organized D-H transfer is not as scary

● Containerized development making the environment setup really easy for multiple platforms

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 23

Future Plan
● Finish Kokkos porting for Wire-Cell Simulation

○ optimizations
○ validations

● Port Wire-Cell Signal Processing

● Better GPU utilization
○ data batching
○ Multi-Process Service

● Explore more backends and portability solutions
○ HIP
○ SYCL, Parallel C++ STL

● Applications:
○ production with suitable hardware
○ collaboration with online analyses

2021-05-20 Haiwang Yu, vCHEP 2021 HEP-CCE 24

Backups

