
EDM4hep and podio - The event data model of the
Key4hep project and its implementation
vCHEP 2021

F. Gaede, G. Ganis, B. Hegner, C. Helsens,
T. Madlener, A. Sailer, G.A. Stewart, V. Volkl, J. Wang

May 18, 2021

Outline

• Event Data Model basics and EDM4hep
• podio - A generic EDM toolkit
• Latest developments and benchmarks
• Currently ongoing work and future plans

May 18, 2021 T.Madlener | EDM4hep and podio 1

The EDM at the core of HEP software

• Different components of HEP experiment software have to talk to each other
• The event data model defines the language for this communication
• Users express their ideas in the same language

May 18, 2021 T.Madlener | EDM4hep and podio 2

*iLCSoft components here, but
general scheme applies

Goals for EDM4hep

• The Key4hep project aims to define a common software stack for all future
collider projects

• see A. Sailer, Key4hep: Status and Plans (SW parallel session, Tue afternoon)

• EDM4hep is the common EDM that can be used by all communities in the
Key4Hep project

• ILC, CLIC, FCC-ee & FCC-hh, CEPC, ...
• Support different use cases from these communities

• Lepton and hadron collisions lead to different environments and requirements
for an EDM

• Efficiently implemented, support multi-threading and potentially
heterogeneous computing

• Use experience from LCIO and FCC-edm

May 18, 2021 T.Madlener | EDM4hep and podio 3

https://indico.cern.ch/event/948465/contributions/4324168/

EDM4hep schema

EDM4hep DataModel Overview (v0.3)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

May 18, 2021 T.Madlener | EDM4hep and podio 4

podio as generator for EDM4hep
• Original HEP c++ EDMs are heavily Object Oriented

• Deep inheritance structures
• Thread-safety can be hard
• Objects scattered in memory

• Data access can be slow with these approaches
• Use podio to generate thread safe code starting
from a high level description of the desired EDM

• Users are isolated from implementation details
• Target different I/O backends for persistency

• Provide an easy to use interface to the users
• Users should not need to worry about resource
management

• Treat python as first class citizen and allow
“pythonic” usage

.cc
.cc

class MCParticleData{
 int PDG;
 float charge;
 double mass;
 Vector3d vertex;
};

.h/.cc

MCParticle:
 Members:
 - int PDG
 - float charge
 - double mass
 - Vector3d vertex

YAML

(*podio code
generator) +=

AIDASoft/podio

May 18, 2021 T.Madlener | EDM4hep and podio 5

https://github.com/AIDASoft/podio

The three layers of podio

• podio favors composition over inheritance and uses plain-old-data (POD)
types wherever possible

• User Layer consists of handles to the EDM
objects and offers the full functionality

• The Object Layer handles resources and
references to other objects

• The actual PODs live in the POD Layer
• Layered design allows for efficient memory
layout and performant I/O implementation

• ROOT I/O is used by default
• An SIO based has recently been added

May 18, 2021 T.Madlener | EDM4hep and podio 6

Automatic code generation

components:
edm4hep::Vector3f:

Members: [float x, float y, float z]

datatypes:
edm4hep::ReconstructedParticle:

Description: "Reconstructed Particle"
Author : "F.Gaede, DESY"
Members:

- edm4hep::Vector3f momentum // [GeV] particle momentum
- std::array<float, 10> covMatrix // energy-momentum covariance

OneToOneRelations:
- edm4hep::Vertex startVertex // start vertex associated to this particle

OneToManyRelations:
- edm4hep::Cluster clusters // clusters that have been used for this particle
- edm4hep::ReconstructedParticle particles // associated particles

ExtraCode:
declaration: "bool isCompund() const { return particles_size() > 0; }\n"

• Reusable
components

• Fixed sized arrays as
members

• 1 – 1 and 1 – N
relations

• Additional
user-provided code

• Validation and consistency check before code generation
• Members can only be fundamental types or PODs
• Relations only possible within the defined EDM

• Completely reworked. Now using easy to extend jinja2 templates
May 18, 2021 T.Madlener | EDM4hep and podio 7

podio - core features

• Support for variable size
VectorMembers

• Break the “POD-ness” of the
datatypes

• Same restrictions as for other data
members

• Value semantics in c++
• C++17 compliant code generation
• Easy to use python interface via
PyROOT

VectorMembers in yaml definition
edm4hep::ParticleID:

VectorMembers:
- float parameters // hypothesis params

C++ usage examples
// Vector members usage
auto pid = ParticleID();
pid.addToParameters(3.14);
for (auto p : pid.getParameters()) { /**/ }

// General usage of datatypes
auto coll = MCParticleCollection();
auto mc = coll.create();
mc.setMass(3.096);

for (auto p : mc.getParents()) {
const auto mass = p.getMass();

}

python usage examples
store = EventStore('events.root')

for event in store:
particles = event.get('MCParticles')
for p in particles:

print(p.getMass())

May 18, 2021 T.Madlener | EDM4hep and podio 8

CMake interface for projects using podio

find_package(PODIO)

generate the c++ code from the yaml definition
PODIO_GENERATE_DATAMODEL(edm4hep edm4hep.yaml headers sources IO_BACKEND_HANDLERS "ROOT;SIO")
compile the core data model shared library (no I/O)
PODIO_ADD_DATAMODEL_CORE_LIB(edm4hep "${headers}" "${sources}")
generate and compile the ROOT I/O dictionary
PODIO_ADD_ROOT_IO_DICT(edm4hepDict edm4hep "${headers}" src/selection.xml)
compile the SIOBlocks shared library for the SIO backend
PODIO_ADD_SIO_IO_BLOCKS(edm4hep "${headers}" "${sources}")

Install the created targets
install(TARGETS edm4hep edm4hepDict edm4hepSioBlocks)

• Easy to use functions for integrating a podio generated EDM into a project
• Split into core EDM library and I/O handling for different backends

• Pick what you need
• I/O handling parts dynamically loaded by podio on startup (searching
LD_LIBRARY_PATH)

May 18, 2021 T.Madlener | EDM4hep and podio 9

The I/O in podio

• I/O operations are based on
collections

• All Data PODs are read/written as
one array of PODs

• Relations are persisted via arrays of
ObjectIDs

• VectorMembers are concatenated
into one array per member

• I/O backends only have to be able
to read and write arrays of PODs.
The rest is handled by podio

Obj

Collection
ObjectID

Data

Relations

Vector
Members

I/O
Backend

POD buffers

May 18, 2021 T.Madlener | EDM4hep and podio 10

I/O backends benchmarks using EDM4hep

• Default ROOT based backend
• Buffers are stored as branches in a
TTree

• Backend based on SIO also available
• Persistency library used in LCIO
• Writes binary records of complete
events

• iLCSoft/SIO

• key4hep/k4SimDelphes to generate
“realistic” EDM4hep benchmark data

• Use podio benchmarking tools
focussing on I/O times

0 100 200 300 400
total number of objects per event

10 5

10 4

10 3

10 2

10 1

fra
ct

io
n

of
 e

ve
nt

s

ee Z bb
ee Z
ee ZH X

• Z decays @ FCC-ee
√
s = 91 GeV

• “Higgs recoil” @ ILD
√
s = 250 GeV

May 18, 2021 T.Madlener | EDM4hep and podio 11

https://github.com/iLCSoft/SIO
https://github.com/key4hep/k4SimDelphes

Benchmark results

• SIO backend can read files faster
• ROOT backend can write files faster
• ROOT files are smaller than SIO files
• Semi-automatic benchmark setup
caught regression with ROOT 6.22/06

• Quickly identified with the help of
ROOT developers

• Overall improved implementation
with 20–30 % speed-up

• Reading of partial event contents lead
to speed up for ROOT but not SIO

• SIO backend stores complete events

relative to root

read

write

file size

0 1

Z to bb Z to tau tau Higgs recoil

podio@4b10456, ROOT v6.22/08, SIO v00-01

May 18, 2021 T.Madlener | EDM4hep and podio 12

Current status and next steps for EDM4hep

• LCIO and FCC-edm mainly used for lepton collider
physics studies

• Key4hep and EDM4hep should support all kinds of
future collider studies

• First studies in context of FCC-hh are on their way
• Finalize EDM4hep schema

• Main entities and relations well defined
• Handling of “generic user data” under discussion

• Migration of existing software to Key4hep stack
• FCC-edm was podio based. FCCSW migration
almost done

• Marlin processor wrapper with on-the-fly
conversion between LCIO and EDM4hep is available

courtesy of B. Stapf

key4hep/k4MarlinWrapper

May 18, 2021 T.Madlener | EDM4hep and podio 13

https://github.com/key4hep/k4MarlinWrapper

Schema evolution

• Long overdue on our TODO list
• Allow to read older versions of an EDM
and convert “on-the-fly”

• Only deal with the current version in
memory

• Automatic conversion code generation
• User defined conversions for non-trivial
changes (e.g. change of coordinate
system)

• Work has started and this is currently our
top priority

May 18, 2021 T.Madlener | EDM4hep and podio 14

Next steps and future plans for podio

“Flat data formats”
• Data PODs trivially usable
• Relation handling is cumbersome
• Ongoing work (investigating RNTuple,
provide utilities, ...)

“Reference collections”
• Non-owning collections that
reference objects in other collections

• Well used feature in LCIO EDM
Building blocks for core functionality

• Consolidate standalone and
framework implementation

d = ROOT.RDataFrame('events', 'events.root')
h = (d.Define('abs_pdg', 'abs(Particle.PDG)')

.Define('mu_sel', 'abs_pdg == 13')

.Define('mu_px', 'Particle.momentum.x[mu_sel]')

.Histo1D('mu_px'))
h.DrawCopy()

Usage with heterogenous resources
• PODs based design should help
• Collecting possible use and
benchmark cases

More benchmarks
• Fully automatize setup
• Also look at non-I/O parts

May 18, 2021 T.Madlener | EDM4hep and podio 15

Summary

• LCIO and FCC-edm inspired EDM4hep has become quite mature and is used
already for physics studies by the ILC, CLIC, FCC and CEPC communities

• Feedback is very welcome. Give it a go and tell us what needs to be improved
• Tue 09:00 AM CET, alternating Key4hep/EDM4hep: indico.cern.ch/category/11461/

• Many “under the hood” developments in podio for better usability and
maintainability

• Integrated SIO as a second I/O backend
• Semi-automatic setup can be used for benchmarking I/O performance

• Helped us discover and fix a performance regression

• Started to tackle long standing issue of missing schema evolution
• No shortage of work in the near future

May 18, 2021 T.Madlener | EDM4hep and podio 16

https://indico.cern.ch/category/11461/

May 18, 2021 T.Madlener | EDM4hep and podio 0

Backup

Pointers to Resources

• Key4HEP
key4hep.github.io/key4hep-doc

key4hep
• EDM4HEP

key4hep/EDM4hep
cern.ch/edm4hep

• k4SimDelphes
key4hep/k4SimDelphes
delphes/delphes

cp3.irmp.ucl.ac.be/projects/delphes
• podio

AIDASoft/podio

xkcd.com/138

May 18, 2021 T.Madlener | EDM4hep and podio 1 (backup)

https://key4hep.github.io/key4hep-doc/index.html
https://github.com/key4hep
https://github.com/key4hep/EDM4hep
https://key4hep.github.io/EDM4hep/doc/latest/index.html
https://github.com/key4hep/k4SimDelphes
https://github.com/delphes/delphes
https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/AIDASoft/podio
https://xkcd.com/138/

Per event benchmark distributions

10 6

10 4

10 2 ee Z bb
ee Z
ee ZH X

write

0 500 1000 1500

10 6

10 4

10 2 sio
root

0 500 1000 1500 0 500 1000 1500

read

time per event / s

fra
ct

io
n

of
 e

ve
nt

s

• ROOT backend features long tails in per event read and write times
• This is the reason for slower total read times compared to SIO
• Might be controllable with non-default settings. But phase space is large

• SIO backend times seem to generally scale with the size of the event
May 18, 2021 T.Madlener | EDM4hep and podio 2 (backup)

Scaling with event content

• No unexpected behavior vs event size
in per event read and write times or
resulting file sizes

• More data points necessary for
establishing anything more empirical

0.05
0.10
0.15

re
ad

 /
m

s sio
root

0.1
0.2
0.3

wr
ite

 /
m

s

25 50 75 100 125 150 175
median number of objects per event

2.5

5.0

fil
e

siz
e

/ k
B

ee Z bb
ee Z
ee ZH X

May 18, 2021 T.Madlener | EDM4hep and podio 3 (backup)

k4SimDelphes - First steps towards physics

• k4SimDelphes uses delphes to do the
simulation and reconstruction and creates
output files in EDM4HEP format

• Quick way to get your hands dirty and do
some physics with EDM4HEP

• Integrated into Key4hep framework
• Available as standalone executables

• E.g. DelphesPythia8_EDM4HEP,
DelphesSTDHEP_EDM4HEP, ...

• Part of a coherent approach to generation /
simulation in Key4HEP

• Ideally no difference between the different
approaches to simulate detector response

80 90 100 110 120 130 140 150

Z leptonic recoil [GeV]

0

5000

10000

15000

20000

25000

30000

ev
en

ts
 /

0.
40

 G
eV ZH

WW
ZZ

FCC-ee Simulation (Delphes)

 = 240.0 GeVs
-1L = 5 ab

 + X-µ+µ → ZH → -e+e
 < 100 GeV

Z
 = 1; 80 GeV < m

Z
Selection: N

courtesy of C. Helsens

May 18, 2021 T.Madlener | EDM4hep and podio 4 (backup)

key4hep/k4SimDelphes

https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/key4hep/k4SimDelphes

	Appendix

