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Outline

• Event Data Model basics and EDM4hep
• podio - A generic EDM toolkit
• Latest developments and benchmarks
• Currently ongoing work and future plans
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The EDM at the core of HEP software

• Different components of HEP experiment software have to talk to each other
• The event data model defines the language for this communication
• Users express their ideas in the same language
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*iLCSoft components here, but
general scheme applies



Goals for EDM4hep

• The Key4hep project aims to define a common software stack for all future
collider projects

• see A. Sailer, Key4hep: Status and Plans (SW parallel session, Tue afternoon)

• EDM4hep is the common EDM that can be used by all communities in the
Key4Hep project

• ILC, CLIC, FCC-ee & FCC-hh, CEPC, ...
• Support different use cases from these communities

• Lepton and hadron collisions lead to different environments and requirements
for an EDM

• Efficiently implemented, support multi-threading and potentially
heterogeneous computing

• Use experience from LCIO and FCC-edm
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https://indico.cern.ch/event/948465/contributions/4324168/


EDM4hep schema

EDM4hep DataModel Overview (v0.3)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation
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podio as generator for EDM4hep
• Original HEP c++ EDMs are heavily Object Oriented

• Deep inheritance structures
• Thread-safety can be hard
• Objects scattered in memory

• Data access can be slow with these approaches
• Use podio to generate thread safe code starting
from a high level description of the desired EDM

• Users are isolated from implementation details
• Target different I/O backends for persistency

• Provide an easy to use interface to the users
• Users should not need to worry about resource
management

• Treat python as first class citizen and allow
“pythonic” usage

.cc
.cc

class MCParticleData{
  int PDG;
  float charge;
  double mass;
  Vector3d vertex;
};

.h/.cc

MCParticle:
  Members:
    - int PDG
    - float charge
    - double mass
    - Vector3d vertex

YAML

(*podio code 
generator) +=

AIDASoft/podio
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https://github.com/AIDASoft/podio


The three layers of podio

• podio favors composition over inheritance and uses plain-old-data (POD)
types wherever possible

• User Layer consists of handles to the EDM
objects and offers the full functionality

• The Object Layer handles resources and
references to other objects

• The actual PODs live in the POD Layer
• Layered design allows for efficient memory
layout and performant I/O implementation

• ROOT I/O is used by default
• An SIO based has recently been added
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Automatic code generation

components:
edm4hep::Vector3f:

Members: [float x, float y, float z]

datatypes:
edm4hep::ReconstructedParticle:

Description: "Reconstructed Particle"
Author : "F.Gaede, DESY"
Members:

- edm4hep::Vector3f momentum // [GeV] particle momentum
- std::array<float, 10> covMatrix // energy-momentum covariance

OneToOneRelations:
- edm4hep::Vertex startVertex // start vertex associated to this particle

OneToManyRelations:
- edm4hep::Cluster clusters // clusters that have been used for this particle
- edm4hep::ReconstructedParticle particles // associated particles

ExtraCode:
declaration: "bool isCompund() const { return particles_size() > 0; }\n"

• Reusable
components

• Fixed sized arrays as
members

• 1 – 1 and 1 – N
relations

• Additional
user-provided code

• Validation and consistency check before code generation
• Members can only be fundamental types or PODs
• Relations only possible within the defined EDM

• Completely reworked. Now using easy to extend jinja2 templates
May 18, 2021 T.Madlener | EDM4hep and podio 7



podio - core features

• Support for variable size
VectorMembers

• Break the “POD-ness” of the
datatypes

• Same restrictions as for other data
members

• Value semantics in c++
• C++17 compliant code generation
• Easy to use python interface via
PyROOT

VectorMembers in yaml definition
edm4hep::ParticleID:

VectorMembers:
- float parameters // hypothesis params

C++ usage examples
// Vector members usage
auto pid = ParticleID();
pid.addToParameters(3.14);
for (auto p : pid.getParameters()) { /**/ }

// General usage of datatypes
auto coll = MCParticleCollection();
auto mc = coll.create();
mc.setMass(3.096);

for (auto p : mc.getParents()) {
const auto mass = p.getMass();

}

python usage examples
store = EventStore('events.root')

for event in store:
particles = event.get('MCParticles')
for p in particles:

print(p.getMass())
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CMake interface for projects using podio

find_package(PODIO)

# generate the c++ code from the yaml definition
PODIO_GENERATE_DATAMODEL(edm4hep edm4hep.yaml headers sources IO_BACKEND_HANDLERS "ROOT;SIO")
# compile the core data model shared library (no I/O)
PODIO_ADD_DATAMODEL_CORE_LIB(edm4hep "${headers}" "${sources}")
# generate and compile the ROOT I/O dictionary
PODIO_ADD_ROOT_IO_DICT(edm4hepDict edm4hep "${headers}" src/selection.xml)
# compile the SIOBlocks shared library for the SIO backend
PODIO_ADD_SIO_IO_BLOCKS(edm4hep "${headers}" "${sources}")

# Install the created targets
install(TARGETS edm4hep edm4hepDict edm4hepSioBlocks)

• Easy to use functions for integrating a podio generated EDM into a project
• Split into core EDM library and I/O handling for different backends

• Pick what you need
• I/O handling parts dynamically loaded by podio on startup (searching
LD_LIBRARY_PATH)
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The I/O in podio

• I/O operations are based on
collections

• All Data PODs are read/written as
one array of PODs

• Relations are persisted via arrays of
ObjectIDs

• VectorMembers are concatenated
into one array per member

• I/O backends only have to be able
to read and write arrays of PODs.
The rest is handled by podio

Obj

Collection
ObjectID

Data

Relations

Vector
Members

I/O 
Backend

POD buffers
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I/O backends benchmarks using EDM4hep

• Default ROOT based backend
• Buffers are stored as branches in a
TTree

• Backend based on SIO also available
• Persistency library used in LCIO
• Writes binary records of complete
events

• iLCSoft/SIO

• key4hep/k4SimDelphes to generate
“realistic” EDM4hep benchmark data

• Use podio benchmarking tools
focussing on I/O times
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• Z decays @ FCC-ee
√
s = 91 GeV

• “Higgs recoil” @ ILD
√
s = 250 GeV
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https://github.com/iLCSoft/SIO
https://github.com/key4hep/k4SimDelphes


Benchmark results

• SIO backend can read files faster
• ROOT backend can write files faster
• ROOT files are smaller than SIO files
• Semi-automatic benchmark setup
caught regression with ROOT 6.22/06

• Quickly identified with the help of
ROOT developers

• Overall improved implementation
with 20–30 % speed-up

• Reading of partial event contents lead
to speed up for ROOT but not SIO

• SIO backend stores complete events

relative to root

read

write

file size

0 1

Z to bb Z to tau tau Higgs recoil

podio@4b10456, ROOT v6.22/08, SIO v00-01
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Current status and next steps for EDM4hep

• LCIO and FCC-edm mainly used for lepton collider
physics studies

• Key4hep and EDM4hep should support all kinds of
future collider studies

• First studies in context of FCC-hh are on their way
• Finalize EDM4hep schema

• Main entities and relations well defined
• Handling of “generic user data” under discussion

• Migration of existing software to Key4hep stack
• FCC-edm was podio based. FCCSW migration
almost done

• Marlin processor wrapper with on-the-fly
conversion between LCIO and EDM4hep is available

courtesy of B. Stapf

key4hep/k4MarlinWrapper
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https://github.com/key4hep/k4MarlinWrapper


Schema evolution

• Long overdue on our TODO list
• Allow to read older versions of an EDM
and convert “on-the-fly”

• Only deal with the current version in
memory

• Automatic conversion code generation
• User defined conversions for non-trivial
changes (e.g. change of coordinate
system)

• Work has started and this is currently our
top priority
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Next steps and future plans for podio

“Flat data formats”
• Data PODs trivially usable
• Relation handling is cumbersome
• Ongoing work (investigating RNTuple,
provide utilities, ...)

“Reference collections”
• Non-owning collections that
reference objects in other collections

• Well used feature in LCIO EDM
Building blocks for core functionality

• Consolidate standalone and
framework implementation

d = ROOT.RDataFrame('events', 'events.root')
h = (d.Define('abs_pdg', 'abs(Particle.PDG)')

.Define('mu_sel', 'abs_pdg == 13')

.Define('mu_px', 'Particle.momentum.x[mu_sel]')

.Histo1D('mu_px'))
h.DrawCopy()

Usage with heterogenous resources
• PODs based design should help
• Collecting possible use and
benchmark cases

More benchmarks
• Fully automatize setup
• Also look at non-I/O parts
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Summary

• LCIO and FCC-edm inspired EDM4hep has become quite mature and is used
already for physics studies by the ILC, CLIC, FCC and CEPC communities

• Feedback is very welcome. Give it a go and tell us what needs to be improved
• Tue 09:00 AM CET, alternating Key4hep/EDM4hep: indico.cern.ch/category/11461/

• Many “under the hood” developments in podio for better usability and
maintainability

• Integrated SIO as a second I/O backend
• Semi-automatic setup can be used for benchmarking I/O performance

• Helped us discover and fix a performance regression

• Started to tackle long standing issue of missing schema evolution
• No shortage of work in the near future
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Pointers to Resources

• Key4HEP
key4hep.github.io/key4hep-doc

key4hep
• EDM4HEP

key4hep/EDM4hep
cern.ch/edm4hep

• k4SimDelphes
key4hep/k4SimDelphes
delphes/delphes

cp3.irmp.ucl.ac.be/projects/delphes
• podio

AIDASoft/podio

xkcd.com/138
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https://key4hep.github.io/key4hep-doc/index.html
https://github.com/key4hep
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https://github.com/key4hep/k4SimDelphes
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Per event benchmark distributions
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• ROOT backend features long tails in per event read and write times
• This is the reason for slower total read times compared to SIO
• Might be controllable with non-default settings. But phase space is large

• SIO backend times seem to generally scale with the size of the event
May 18, 2021 T.Madlener | EDM4hep and podio 2 (backup)



Scaling with event content

• No unexpected behavior vs event size
in per event read and write times or
resulting file sizes

• More data points necessary for
establishing anything more empirical
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k4SimDelphes - First steps towards physics

• k4SimDelphes uses delphes to do the
simulation and reconstruction and creates
output files in EDM4HEP format

• Quick way to get your hands dirty and do
some physics with EDM4HEP

• Integrated into Key4hep framework
• Available as standalone executables

• E.g. DelphesPythia8_EDM4HEP,
DelphesSTDHEP_EDM4HEP, ...

• Part of a coherent approach to generation /
simulation in Key4HEP

• Ideally no difference between the different
approaches to simulate detector response
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courtesy of C. Helsens
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key4hep/k4SimDelphes

https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/key4hep/k4SimDelphes
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