Charged Particle Tracking via Edge-Classifying Interaction Networks

Gage DeZoort*, Savannah Thais, Isobel Ojalvo, Peter Elmer, Javier Duarte, Vesal Razavimaleki, Markus Atkinson, Mark Neubauer

5/21/2021

* jdezoort@princeton.edu

Overview:

- Our group studies GNN-based tracking workflows
 - Experimental ML approaches
 - Acceleration via heterogeneous resources
- This work is focused on the Interaction Network GNN architecture adapted to the task of edge classification
- We present a set of measurements at each stage of GNN-based tracking:
 - 1) Graph Construction
 - 2) Edge Classification
 - 3) Track Building

Accelerated GNN Tracking

The tracking of charged particles produced in collisions at colliders is a crucial aspect of the science program in the experiments. One of the primary challenges for the HL-LHC is the ability to efficiently, accurately, and rapidly perform tracking in collision events with large interaction pile-up. This project aims to improve charged-particle tracking in the ATLAS and CMS experiments through the use of Geometric Deep Learn methods (particularly Graph Neural Networks (GNNs)) and hardware-based acceleration (currently focused on FPGAs). —

Most current GNN-based approaches to tracking proceed in three distinct stages: graphs are constructed from point cloud of hits in the tracker, the graphs are processed through a GNN to predict a score for each edge (high scores indicate that the edge like belongs to a true particle track, low scores indicate it is a spurious or noise edge), and finally a clustering or graph walk algorithm is used to group the high-scored edges into track candidates. We are studying innovations and optimizations at all three stages of this pipeline. We are also exploring alternate 'one-shot' architectures that are trainable end-to-end and go from point-clouds to track candidates with fit parameters in a single pass.

Project homepage: https://iris-hep.org/projects/accel-gnn-tracking.html

Local Reconstruction

Raw data converted to 3D point cloud of tracker hits

Iterative Tracking

- 1) Track Seeding
 Initial track candidates (seeds)
 built from 2-4 pixel hits
- 2) Track Finding
 Tracks extrapolated outward by a
 Kalman filter, additional hits added
- 3) Track Fitting
 Track parameters estimated from each trajectory
- 4) Track Selection
 Track quality metrics computed,
 suboptimal tracks discarded

Charged Particle Tracking

- Tracks provide crucial measurements of charged particle trajectories
- Full track reconstruction occurs offline
- Reduced track reconstruction at the High-Level Trigger (HLT)

Tracker Data

Track Hits

- Event yields N_{hits}
- Indices: [0, 1, 2, ... *N*_{hits}-1]
- Positions: $[(r_0, \phi_0, z_0), (r_1, \phi_1, z_1), ...]$

Track Hits as Graphs

Hitgraph

Nodes: hits themselves

- Indices: [0, 1, 2, ... N_{hits}-1]
- Features: $[(r_0, \phi_0, z_0), (r_1, \phi_1, z_1), ...]$

Edges: track segment hypotheses

- Connect two hits: e_{ij} between hits i and j
- Construct N_{edges} edges for the event
- Each edge is true or false: $\vec{y} \in \{0,1\}^{N_{edges}}$
- Geometric Features: $e_{ij} = [\Delta r_{ij}, \Delta \phi_{ij}, \Delta z_{ij}, \Delta R_{ij}]$

In general, GNNs operate in a learned latent space

Information is aggregated across local structure specified edges

Graph Neural Networks

- GNNs are well-suited to inference on tracker data:
 - Hits have irregular structure
 - Ability to leverage local geometric information
- GNNs aggregate information in graphstructured data to learn a new embedding
- Subsequent predictions are made on the learned representation of the graph

Three Key Stages of GNN-based Tracking

2. GNN Inference:

Edge classification, predict *edge weights* (probabilities that edges are real track segments)

- = edge predicted to be true
- = edge predicted to be false

3. Track Building:

Cut edge weights below some threshold, apply clustering algorithm to extract tracks

Output: hit clusters

TrackML Generic Tracker 13 -1000 3000 z [mm]

TrackML Dataset

- The following experiments are performed on Kaggle's TrackML dataset
- The TrackML detector is a generalized LHC-style tracker
- Events are generated with <PU> = 200
- We focus specifically on the pixel detector:
 - Improving track seeding
 - No hitgraph segmentation

 p_T threshold used to modulate graph size

Truth labels:

Track Segments
False Edges

1. Graph Construction

- Goal: build graphs in the pixel layers simultaneously maximizing:
 - Truth efficiency: fraction of total track segments contained in the graph
 - Edge efficiency: ratio of track segments to total edges in the graph
- Key assumptions: 1) no noise hits and 2) one hit per layer per particle

HEP.TrkX+

Pixel barrel+endcap graph construction method

Loop over pairs of layers, draw edges between hits satisfying geometric constraints on:

$$\phi_{slope}(i,j) = \frac{\phi_j - \phi_i}{r_j - r_i} \qquad z_0(i,j) = z_i - r_i \times \frac{z_j - z_i}{r_j - r_i}$$

 Barrel intersection cut: reject edges between the barrel layers and endcap layers intersecting with an intermediate barrel layer

DBSCAN

HEP.TrkX+ construction plus requirement that edges correspond to hits in the same DBSCAN η - ϕ cluster

Tracks are observed to be well-localized in η - ϕ space

(η defined w.r.t. spatial coordinates)

Example of DBSCAN hit clustering

Model

True

Interaction Networks arXiv:1612.00222

2. Edge Classification

- Adapted the Interaction Network (IN) architecture to the problem of edge classification
 - Relational Reasoning: compute interaction effects between objects
 - Object Reasoning: aggregate effects, update object features
- Each of these reasoning steps represents a learnable function

GNN Architecture

- Classic IN architecture plus an additional relational reasoning step to produce edge weights
 - 3 NN models, each with separate weights
 - 6448 total trainable parameters
 - Sigmoid constrains output to range (0,1)
- "Block" layout, in general with many iterations of the core IN, is the new paradigm
- Implemented with explicit matrix multiplications in PyTorch

Training Specs

- 1000/400/100 train/test/validation split for HEP.TrkX+ graphs at various p_T thresholds
- Adam optimizer with a scheduled learning rate decay

Optimization

Binary cross-entropy loss function

$$\ell(y_n, W_n(\mathcal{G})) = -\sum_{i=1}^{n_{\text{edges}}} (y_i \log w_i + (1 - y_i) \log(1 - w_i))$$

Targets: $y_i = \{0, 1\}$

Predictions: $w_i \in (0, 1)$

 $p_{T}^{min} = 1 \text{ GeV}$ Loss: 6.0×10⁻³

Accuracy: 99.81%

Errors: 57/29,661 edges

Models trained on train_1 sample graphs were tested on 500 graphs from the train_2 sample at various p_min thresholds Averaged best inference time at each p_T^{min}

Inference Timing *

GPU: Nvidia Titan Xp GPU with 12 GB RAM

CPU: 12-core Intel XeonCPU E5-2650 v4 @ 2.20 GHz

$p_{\mathrm{T}}^{\mathrm{min}}$ [GeV]	HEP.TrkX		HEP.TrkX+	
	CPU [ms]	GPU [ms]	CPU [ms]	GPU [ms]
2	1.5 ± 0.2	0.8 ± 0.02	2.9 ± 0.6	0.9 ± 0.03
1.5	2.8 ± 0.1	0.8 ± 0.01	13.1 ± 5.5	1.0 ± 0.2
1	11.1 ± 3.5	1.0 ± 0.1	130.7 ± 60.7	8.0 ± 4.0
0.75	44.6 ± 18.0	2.9 ± 1.3	686.2 ± 281.2	44.3 ± 18.8
0.6	131.0 ± 42.9	8.4 ± 2.7	1954.0 ± 724.7	_ •
0.5	250.2 ± 77.8	16.0 ± 5.2	1952.0 ± 717.0	_
1 0.75 0.6	11.1 ± 3.5 44.6 ± 18.0 131.0 ± 42.9	1.0 ± 0.1 2.9 ± 1.3 8.4 ± 2.7	130.7 ± 60.7 686.2 ± 281.2 1954.0 ± 724.7	8.0 ± 4.0

Substantial performance boost from heterogeneous resources like GPUs

Graphs exceed 12 GB during inference

Accelerating Inference

- PyTorch Geometric offers a promising alternative using the MessagePassing base class
 - Sparse edge representation vs. full adjacency matrices
 - Alternative IN representation as a message passing NN

PyTorch Geometric (PyG) Data Class

```
x_1 = 0 import torch from torch_geometric.data import Data x_1 = -1 \quad 0 x_1
```


Edge i rejected if edge weight $w_i < \delta^*$, where δ^* is the threshold at which the true positive rate (TPR) equals the true negative rate (TNR) in a validation sample

Unionfind builds disjoint sets via edge-weighted connectivity

SOURCE: 93willy, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

3. Track Building

- Clustering algorithms leverage GNN predictions to build tracks
 - DBSCAN: iteratively build clusters among neighboring connected points
 - UnionFind: separate disjoint sets to form tracks

Cluster Efficiency

$$\epsilon_{cluster} = \frac{N_{same\ ID}}{N_{clusters}}$$

 $N_{same\ pID}$ = # clusters containing only hits generated by the same particle

Physics Efficiency

$$\epsilon_{physics} = \frac{N_{>50\%}}{N_{particles}}$$

 $N_{>50\%}$ = # clusters containing >50% hits from the same ID, where >50% of that ID's hits are in the cluster

Tight Efficiency

$$\epsilon_{tight} = \frac{N_{all\ hits}}{N_{clusters}}$$

 $N_{all\;hits}$ = # clusters containing only hits from the same ID and every hit assigned to that ID

Conclusion

Upcoming Work

Graph Construction

- Explore additional clustering strategies
- Implement on-chip graph construction algorithms

Edge Classification

- Perform full suite of measurements using DBSCAN graphs
- Produce measurements for the PyTorch Geometric message-passing IN implementation

Track Building

- Compare additional clustering algorithms
- Explore learned strategies that take into account the specific values of the edge weights
- Sync measurements with CMS/ATLAS definitions for more direct comparison

Acknowledgements

S.T. and V.R. are supported by IRIS-HEP through the U.S. National Science Foundation (NSF) under Cooperative Agreement OAC-1836650. J.D. is supported by the U.S. Department of Energy (DOE), Office of Science, Office of High Energy Physics Early Career Research program under Award No. DE-SC0021187. G.D. is supported by DOE Award No. DE-SC0007968. We gratefully acknowledge the input and discussion from the Exa.TrkX collaboration.

References:

Tracking

- https://doi.org/10.1016/j.nuclphysbps.2015.09.436
- https://arxiv.org/pdf/1704.07983.pdf
- https://arxiv.org/abs/1901.11198
- https://arxiv.org/pdf/2012.14304.pdf
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/DPGResultsTRK
- https://doi.org/10.1016/j.nuclphysbps.2015.09.162
- https://cds.cern.ch/record/2695003/files/PoSEPS-HEP2019153.pdf

IN Accelerated on FPGAs:

https://arxiv.org/pdf/2012.01563.pdf

Interaction Network Paper:

- https://arxiv.org/pdf/1612.00222.pdf

Code Used This Paper:

- https://github.com/GageDeZoort/interaction_network_paper

Backup Material:

Message Passing Scheme

Message Passing GNNs

- The message passing neural network (MPNN) framework was proposed to summarize the overlapping behavior of several GNN models
 - See Neural Message Passing for Quantum Chemistry (arXiv:1704.01212)

HL-LHC CMS Tracking

- Tracking information will be available at the Level 1 (L1) trigger in the HL-LHC era
 - L1 trigger rates and latency will increase to 750 kHz and 12.5 us
- HLT tracking becomes challenging in high-pileup scenarios
 - During Run 2, HLT tracking took
 35% of the reconstruction time
- Seeding should still take place in the Inner Tracker (pixel layers, 4 in the barrel, ~10(x2) in the endcaps)
 - Reduced cluster merging due to high granularity pixels
 - Ability to reconstruct low p_T tracks

Worse-than-linear scaling with pileup at the HLT

Projected high-pileup tracking efficiency for various seeding strategies

Iteration	Step Name	Seeding	Target Track
0	HighPtQuadruplet	pixel quadruplets	prompt, high $p_{\rm T}$
1	HighPtTriplet	pixel triplets	prompt, high $p_{\rm T}$
2	DetachedQuadruplet	pixel quadruplets	displaced
3	LowPtQuadruplet	pixel quadruplets	prompt, low $p_{\rm T}$
4	LowPtTriplet	pixel triplets	prompt, low p_T
_ 5	Muon inside-out	muon-tagged tracks	muon tracks

Hyperparameter Scans

- Architecture optimized on 1 GeV graphs; key assumptions:
 - Each MLP has the same number of hidden layers (2)
 - Each MLP has the same number of hidden units in each hidden layer
- Observed a boost in performance after ~30-40 hidden units per layer

IN Matrix Scheme

Begin with an attributed, directed multigraph G comprised of N_o objects and N_R relations

Graph:

$$G = <0, R>$$

Objects:

$$O = \{o_j\}$$
 where j = 1, ..., N_o

Relations:

R =
$$\{\langle i, j, r_k \rangle_k \}$$
 where k = 1, ..., N_R and $i \neq j$

External Effects

$$X = \{x_j\}$$
 where j = 1, ..., N_o

Well-suited for our problem:

$$\vec{x} = \{(r_1, \phi_1, z_1), (r_2, \phi_2, z_2), ..., (r_N, \phi_N, z_N)\}$$

 $(R_i)_{hs}$ (segment s incoming to hit h) $(R_o)_{hs}$ (segment s outgoing from hit h)

noise modeling, etc.

Marshalling Function:

Re-arranges objects and relations into interaction terms

$$m(G) = [OR_r; OR_s; R_a]$$

```
where 0 = \vec{x}^T
R_r = (\mathbf{R}_i)_{hs} (receiver relations)
R_s = (\mathbf{R}_o)_{hs} (sender relations)
R_a = \{(a_1), (a_2), ..., (a_N)\}, \ a_i = \begin{cases} 1 & same\ layer \\ 0 & cross\ layers \end{cases}
```

Relational Network:

Predicts the effect of each interaction by applying a MLP to each interaction term

$$\Phi_{R}(m(G)) = E$$

Aggregation:

Sums effects for each receiver, combines with objects and external effects

a(G, X, E) = [O; X;
$$\overline{E}$$
] = C
where $\overline{E} = ER_r^T$

Object Model:

Applies a MLP to determine how interactions and dynamics influence the objects

$$\Phi_{R}(C) = P$$

Interaction Network:

Applies relational and object models in stages to infer abstract interactions and object dynamics

Interaction Network:

IN(G) =
$$\Phi_o$$
(a(G, X, Φ_R (m(G))))

- Marshalling: $IN(G) = \Phi_0(a(G, X, \Phi_R(B)))$
- Relational Model: $IN(G) = \Phi_o(a(G, X, E))$
- Aggregation: $IN(G) = \Phi_o(C)$
- Object Model: IN(G) = P

