
Charged Particle Tracking
via Edge-Classifying
Interaction Networks

Gage DeZoort*, Savannah Thais, Isobel Ojalvo,
Peter Elmer, Javier Duarte, Vesal Razavimaleki,
Markus Atkinson, Mark Neubauer

5/21/2021

* jdezoort@princeton.edu

2

Overview:
▪ Our group studies GNN-based

tracking workflows

▪ Experimental ML approaches

▪ Acceleration via heterogeneous
resources

▪ This work is focused on the
Interaction Network GNN architecture
adapted to the task of edge
classification

▪ We present a set of measurements at
each stage of GNN-based tracking:

1) Graph Construction

2) Edge Classification

3) Track Building Project homepage: https://iris-hep.org/projects/accel-gnn-tracking.html

Charged Particle Tracking
▪ Tracks provide crucial measurements

of charged particle trajectories
▪ Full track reconstruction occurs offline
▪ Reduced track reconstruction at the

High-Level Trigger (HLT)

Local Reconstruction
Raw data converted to 3D point
cloud of tracker hits

Iterative Tracking

1) Track Seeding
Initial track candidates (seeds)
built from 2-4 pixel hits

2) Track Finding
Tracks extrapolated outward by a
Kalman filter, additional hits added

3) Track Fitting
Track parameters estimated from
each trajectory

4) Track Selection
Track quality metrics computed,
suboptimal tracks discarded

4

At the HL-LHC, instantaneous luminosity increases
to 5 × 1034 cm−2s−1, delivering 250 fb−1 per year

High-pileup scenario, at or above <PU> = 140-200

Giuseppe Cerati et al 2015 J. Phys.: Conf. Ser. 664 072008

5

Track Hits

▪ Event yields 𝑁ℎ𝑖𝑡𝑠
▪ Indices: [0, 1, 2, … 𝑁ℎ𝑖𝑡𝑠-1]

▪ Positions: [𝑟0, 𝜙0, 𝑧0 , 𝑟1, 𝜙1, 𝑧1 , …]

Nodes: hits themselves

▪ Indices: [0, 1, 2, … 𝑁ℎ𝑖𝑡𝑠-1]

▪ Features: [𝑟0, 𝜙0, 𝑧0 , 𝑟1, 𝜙1, 𝑧1 , …]

Edges: track segment hypotheses

▪ Connect two hits: 𝑒𝑖𝑗 between hits 𝑖 and 𝑗

▪ Construct 𝑁𝑒𝑑𝑔𝑒𝑠 edges for the event

▪ Each edge is true or false: റ𝑦 ∈ {0,1}𝑁𝑒𝑑𝑔𝑒𝑠

▪ Geometric Features: 𝑒𝑖𝑗 = [Δ𝑟𝑖𝑗 , Δ𝜙𝑖𝑗 , Δ𝑧𝑖𝑗 , Δ𝑅𝑖𝑗]

Tracker Data Hitgraph

Figure Source: https://arxiv.org/pdf/2012.01249.pdf

Track Hits as Graphs

6

Graph Neural Networks
▪ GNNs are well-suited to inference on

tracker data:
▪ Hits have irregular structure

▪ Ability to leverage local geometric
information

▪ GNNs aggregate information in graph-
structured data to learn a new
embedding

▪ Subsequent predictions are made on the
learned representation of the graph

GNNs: High-Level View

Figure Source: https://deepmind.com/blog/article/Towards-understanding-glasses-with-graph-neural-networks

In general, GNNs
operate in a
learned latent
space

Information is
aggregated across
local structure
specified edges

7

Three Key Stages of
GNN-based Tracking

1. Graph Construction:
Convert tracker data to a hitgraph

= nodes (detector hits)

= edges (possible trajectories)

= true particle trajectory

2. GNN Inference:
Edge classification, predict edge
weights (probabilities that edges
are real track segments)

= edge predicted to be true

= edge predicted to be false

3. Track Building:
Cut edge weights below some
threshold, apply clustering
algorithm to extract tracks

Output: hit clusters

0.07 0.010.18

0.210.86

0.92

0.93

0.20
0.34 0.86

0.80

0.02

0.86

0.92

0.93

0.86

0.80

8
Figure Source: https://www.kaggle.com/c/trackml-particle-identification

TrackML Dataset
▪ The following experiments are performed

on Kaggle’s TrackML dataset

▪ The TrackML detector is a generalized
LHC-style tracker

▪ Events are generated with <PU> = 200

▪ We focus specifically on the pixel detector:

▪ Improving track seeding

▪ No hitgraph segmentation

TrackML Pixel Tracker

Phase-2 CMS Tracker Upgrade Phase-II ATLAS ITK Upgrade

TrackML Generic Tracker

1. Graph Construction

▪ Goal: build graphs in the pixel layers simultaneously maximizing:

▪ Truth efficiency: fraction of total track segments contained in the graph

▪ Edge efficiency: ratio of track segments to total edges in the graph

▪ Key assumptions: 1) no noise hits and 2) one hit per layer per particle

9

(special high-pileup run) pT threshold used to
modulate graph size

Truth labels:

Track Segments
False Edges

10

Tracks are observed
to be well-localized in
𝜂-𝜙 space

(𝜂 defined w.r.t. spatial
coordinates)

HEP.TrkX+
Pixel barrel+endcap graph construction method

DBSCAN
HEP.TrkX+ construction plus requirement that edges
correspond to hits in the same DBSCAN 𝜂-𝜙 cluster

▪ Barrel intersection cut: reject edges between the
barrel layers and endcap layers intersecting with an
intermediate barrel layer

▪ Loop over pairs of layers, draw edges between hits
satisfying geometric constraints on:

𝜙𝑠𝑙𝑜𝑝𝑒 𝑖, 𝑗 =
𝜙𝑗 −𝜙𝑖

rj − r𝑖
𝑧0 𝑖, 𝑗 = 𝑧𝑖 − 𝑟𝑖 ×

𝑧𝑗 − 𝑧𝑖

𝑟𝑗 − 𝑟𝑖

Example of DBSCAN hit clustering

2. Edge Classification

▪ Adapted the Interaction Network (IN) architecture to the problem of edge
classification

▪ Relational Reasoning: compute interaction effects between objects

▪ Object Reasoning: aggregate effects, update object features

▪ Each of these reasoning steps represents a learnable function 11

Interaction Networks arXiv:1612.00222

12

GNN Architecture
▪ Classic IN architecture plus an

additional relational reasoning
step to produce edge weights

▪ 3 NN models, each with separate
weights

▪ 6448 total trainable parameters

▪ Sigmoid constrains output to
range (0,1)

▪ “Block” layout, in general with
many iterations of the core IN,
is the new paradigm

▪ Implemented with explicit
matrix multiplications in
PyTorch

Graph input

Edge Block 1

Node Block

Edge Block 2

13

Optimization
▪ Binary cross-entropy loss function

Targets:

Predictions: Training Specs
- 1000/400/100 train/test/validation split for

HEP.TrkX+ graphs at various pT thresholds
- Adam optimizer with a scheduled learning rate

decay

14

pT
min = 1 GeV

Loss: 6.0×10−3

Accuracy: 99.81%
Errors: 57/29,661 edges

Models trained on train_1 sample graphs
were tested on 500 graphs from the
train_2 sample at various pT

min thresholds

15

Inference Timing
GPU: Nvidia Titan Xp GPU with 12 GB RAM

CPU: 12-core Intel XeonCPU E5-2650 v4 @ 2.20 GHz

Graphs exceed
12 GB during
inference

Substantial
performance boost
from heterogeneous
resources like GPUs

Averaged best inference
time at each pT

min

16

Accelerating Inference
▪ PyTorch Geometric offers a promising

alternative using the MessagePassing base
class

▪ Sparse edge representation vs. full
adjacency matrices

▪ Alternative IN representation as a
message passing NN

Graph Sizes

CMS tracker layout

PyTorch Geometric (PyG) Data Class

O(Nedges)
representation

https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html

3. Track Building

▪ Clustering algorithms leverage GNN predictions to build tracks

▪ DBSCAN: iteratively build clusters among neighboring connected points

▪ UnionFind: separate disjoint sets to form tracks

17

DBSCAN clusters
connected hits in space

Unionfind builds disjoint sets
via edge-weighted connectivity

https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg

Edge 𝑖 rejected if edge weight 𝑤𝑖 < 𝛿∗,
where 𝛿∗ is the threshold at which the true
positive rate (TPR) equals the true negative
rate (TNR) in a validation sample

SOURCE: 93willy, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons SOURCE: Chire, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

18

Cluster Efficiency

𝜖𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
𝑁𝑠𝑎𝑚𝑒 𝐼𝐷

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑁𝑠𝑎𝑚𝑒 𝑝𝐼𝐷 = # clusters containing

only hits generated by
the same particle

Physics Efficiency

𝜖𝑝ℎ𝑦𝑠𝑖𝑐𝑠 =
𝑁>50%
𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑁>50% = # clusters containing >50%
hits from the same ID,
where >50% of that ID’s hits
are in the cluster

Tight Efficiency

𝜖𝑡𝑖𝑔ℎ𝑡 =
𝑁𝑎𝑙𝑙 ℎ𝑖𝑡𝑠
𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑁𝑎𝑙𝑙 ℎ𝑖𝑡𝑠 = # clusters containing only
hits from the same ID and
every hit assigned to that
ID

19

Edge Classification
▪ Perform full suite of measurements using DBSCAN

graphs

▪ Produce measurements for the PyTorch Geometric
message-passing IN implementation

Graph Construction
▪ Explore additional clustering strategies

▪ Implement on-chip graph construction algorithms

Upcoming Work

Track Building
▪ Compare additional clustering algorithms

▪ Explore learned strategies that take into account the
specific values of the edge weights

▪ Sync measurements with CMS/ATLAS definitions for
more direct comparison

Conclusion

20

Acknowledgements
S.T. and V.R. are supported by IRIS-HEP
through the U.S. National Science Foundation
(NSF) under Cooperative Agreement OAC-
1836650. J.D. is supported by the U.S.
Department of Energy (DOE), Office of Science,
Office of High Energy Physics Early Career
Research program under Award No. DE-
SC0021187. G.D. is supported by DOE Award
No. DE‐SC0007968. We gratefully
acknowledge the input and discussion from
the Exa.TrkX collaboration.

References:
Tracking

- https://doi.org/10.1016/j.nuclphysbps.2015.09.436

- https://arxiv.org/pdf/1704.07983.pdf

- https://arxiv.org/abs/1901.11198

- https://arxiv.org/pdf/2012.14304.pdf

- https://twiki.cern.ch/twiki/bin/view/CMSPublic/DPGResultsTRK

- https://doi.org/10.1016/j.nuclphysbps.2015.09.162

- https://cds.cern.ch/record/2695003/files/PoSEPS-HEP2019153.pdf

IN Accelerated on FPGAs:

- https://arxiv.org/pdf/2012.01563.pdf

Interaction Network Paper:

- https://arxiv.org/pdf/1612.00222.pdf

Code Used This Paper:

- https://github.com/GageDeZoort/interaction_network_paper

https://doi.org/10.1016/j.nuclphysbps.2015.09.436
https://arxiv.org/pdf/1704.07983.pdf
https://arxiv.org/abs/1901.11198
https://arxiv.org/pdf/2012.14304.pdf
https://twiki.cern.ch/twiki/bin/view/CMSPublic/DPGResultsTRK
https://doi.org/10.1016/j.nuclphysbps.2015.09.162
https://cds.cern.ch/record/2695003/files/PoSEPS-HEP2019153.pdf
https://arxiv.org/pdf/2012.01563.pdf
https://arxiv.org/pdf/1612.00222.pdf
https://github.com/GageDeZoort/interaction_network_paper

21

Backup Material:

Message Passing GNNs
▪ The message passing neural network

(MPNN) framework was proposed to
summarize the overlapping behavior
of several GNN models

▪ See Neural Message Passing for
Quantum Chemistry (arXiv:1704.01212)

https://arxiv.org/pdf/1812.08434.pdf, https://pytorch-
geometric.readthedocs.io/en/latest/notes/create_gnn.html

messages passed
within neighborhood

messages
aggregated

update node
embedding

sum, mean, max, etc.
(must be permutation invariant)

multi-layer perceptrons (MLPs)

Message Passing Scheme

https://arxiv.org/pdf/1812.08434.pdf
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html

23

HL-LHC CMS Tracking
▪ Tracking information will be

available at the Level 1 (L1) trigger
in the HL-LHC era

▪ L1 trigger rates and latency will
increase to 750 kHz and 12.5 us

▪ HLT tracking becomes challenging
in high-pileup scenarios

▪ During Run 2, HLT tracking took
35% of the reconstruction time

▪ Seeding should still take place in
the Inner Tracker (pixel layers, 4 in
the barrel, ~10(x2) in the endcaps)

▪ Reduced cluster merging due to
high granularity pixels

▪ Ability to reconstruct low pT tracks

2016 HLT computing limit

Worse-than-linear
scaling with pileup
at the HLT

Projected high-pileup
tracking efficiency for
various seeding strategies

https://doi.org/10.1051/epjconf/201715000001
https://arxiv.org/abs/2003.06460

https://doi.org/10.1051/epjconf/201715000001
https://arxiv.org/abs/2003.06460

24

Hyperparameter Scans
▪ Architecture optimized on 1 GeV

graphs; key assumptions:

▪ Each MLP has the same number of
hidden layers (2)

▪ Each MLP has the same number of
hidden units in each hidden layer

▪ Observed a boost in performance
after ~30-40 hidden units per layer

26

IN Matrix Scheme
Begin with an attributed, directed multigraph
G comprised of No objects and NR relations

▪ Graph:
G = <O, R>

▪ Objects:
O = {oj} where j = 1, …, No

▪ Relations:
R = { <i, j, rk>k } where k = 1, …, NR

and i ≠ j

▪ External Effects
X = {xj} where j = 1, …, No

റ𝑥 = {(𝑟1, 𝜙1, 𝑧1), 𝑟2, 𝜙2, 𝑧2 , …, (𝑟𝑁, 𝜙𝑁, 𝑧𝑁)}

𝑹𝑖 ℎ𝑠 (segment s incoming to hit h)
𝑹𝑜 ℎ𝑠 (segment s outgoing from hit h)

noise modeling, etc.

Well-suited for our problem:

27

where O = റ𝑥𝑇

𝑅𝑟 = 𝑹𝑖 ℎ𝑠 (receiver relations)
𝑅𝑠 = 𝑹𝑜 ℎ𝑠 (sender relations)

𝑅𝑎 = {(𝑎1), (𝑎2), … , (𝑎𝑁)}, 𝑎𝑖 = ൜
1 𝑠𝑎𝑚𝑒 𝑙𝑎𝑦𝑒𝑟
0 𝑐𝑟𝑜𝑠𝑠 𝑙𝑎𝑦𝑒𝑟𝑠

Marshalling Function:
Re-arranges objects and relations
into interaction terms

m(G) = [ORr ; ORs ; Ra]

Relational Network:
Predicts the effect of each
interaction by applying a MLP to
each interaction term

ΦR(m(G)) = E

28

Aggregation:
Sums effects for each receiver,
combines with objects and
external effects

a(G, X, E) = [O; X; ത𝐸] = C

Object Model:
Applies a MLP to determine how
interactions and dynamics
influence the objects

ΦR(C) = P

where ത𝐸 = ERr
T

29

Interaction Network:
Applies relational and object models
in stages to infer abstract
interactions and object dynamics

▪ Interaction Network:

IN(G) = Φo(a(G, X, ΦR(m(G))))

▪ Marshalling:
IN(G) = Φo(a(G, X, ΦR(B)))

▪ Relational Model:
IN(G) = Φo(a(G, X,E))

▪ Aggregation:
IN(G) = Φo(C)

▪ Object Model:
IN(G) = P

