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Overview:
▪ Our group studies GNN-based 

tracking workflows

▪ Experimental ML approaches 

▪ Acceleration via heterogeneous 
resources 

▪ This work is focused on the 
Interaction Network GNN architecture 
adapted to the task of edge 
classification

▪ We present a set of measurements at 
each stage of GNN-based tracking:

1) Graph Construction

2) Edge Classification

3) Track Building Project homepage: https://iris-hep.org/projects/accel-gnn-tracking.html 



Charged Particle Tracking
▪ Tracks provide crucial measurements 

of charged particle trajectories 
▪ Full track reconstruction occurs offline
▪ Reduced track reconstruction at the 

High-Level Trigger (HLT)

Local Reconstruction
Raw data converted to 3D point 
cloud of tracker hits

Iterative Tracking

1) Track Seeding
Initial track candidates (seeds)
built from 2-4 pixel hits

2) Track Finding
Tracks extrapolated outward by a 
Kalman filter, additional hits added

3) Track Fitting 
Track parameters estimated from
each trajectory

4) Track Selection
Track quality metrics computed, 
suboptimal tracks discarded
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At the HL-LHC, instantaneous luminosity increases 
to 5 × 1034 cm−2s−1, delivering 250 fb−1 per year

High-pileup scenario, at or above <PU> = 140-200

Giuseppe Cerati et al 2015 J. Phys.: Conf. Ser. 664 072008
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Track Hits

▪ Event yields 𝑁ℎ𝑖𝑡𝑠
▪ Indices: [0, 1, 2, … 𝑁ℎ𝑖𝑡𝑠-1 ] 

▪ Positions: [ 𝑟0, 𝜙0, 𝑧0 , 𝑟1, 𝜙1, 𝑧1 , … ]

Nodes: hits themselves

▪ Indices: [0, 1, 2, … 𝑁ℎ𝑖𝑡𝑠-1 ] 

▪ Features: [ 𝑟0, 𝜙0, 𝑧0 , 𝑟1, 𝜙1, 𝑧1 , … ]

Edges: track segment hypotheses

▪ Connect two hits:  𝑒𝑖𝑗 between hits 𝑖 and 𝑗

▪ Construct 𝑁𝑒𝑑𝑔𝑒𝑠 edges for the event 

▪ Each edge is true or false: റ𝑦 ∈ {0,1}𝑁𝑒𝑑𝑔𝑒𝑠

▪ Geometric Features: 𝑒𝑖𝑗 = [Δ𝑟𝑖𝑗 , Δ𝜙𝑖𝑗 , Δ𝑧𝑖𝑗 , Δ𝑅𝑖𝑗]

Tracker Data Hitgraph

Figure Source: https://arxiv.org/pdf/2012.01249.pdf

Track Hits as Graphs 
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Graph Neural Networks
▪ GNNs are well-suited to inference on 

tracker data:
▪ Hits have irregular structure 

▪ Ability to leverage local geometric 
information 

▪ GNNs aggregate information in graph-
structured data to learn a new 
embedding

▪ Subsequent predictions are made on the 
learned representation of the graph

GNNs: High-Level View

Figure Source: https://deepmind.com/blog/article/Towards-understanding-glasses-with-graph-neural-networks

In general, GNNs 
operate in a 
learned latent 
space 

Information is 
aggregated across 
local structure 
specified edges
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Three Key Stages of 
GNN-based Tracking

1. Graph Construction:
Convert tracker data to a hitgraph

= nodes (detector hits)

= edges (possible trajectories)

= true particle trajectory 

2. GNN Inference:
Edge classification, predict edge
weights (probabilities that edges 
are real track segments)

= edge predicted to be true

= edge predicted to be false

3. Track Building:
Cut edge weights below some
threshold, apply clustering 
algorithm to extract tracks

Output: hit clusters
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Figure Source: https://www.kaggle.com/c/trackml-particle-identification

TrackML Dataset
▪ The following experiments are performed 

on Kaggle’s TrackML dataset

▪ The TrackML detector is a generalized 
LHC-style tracker

▪ Events are generated with <PU> = 200

▪ We focus specifically on the pixel detector:

▪ Improving track seeding 

▪ No hitgraph segmentation 

TrackML Pixel Tracker

Phase-2 CMS Tracker Upgrade Phase-II ATLAS ITK Upgrade

TrackML Generic Tracker



1. Graph Construction

▪ Goal: build graphs in the pixel layers simultaneously maximizing:

▪ Truth efficiency: fraction of total track segments contained in the graph

▪ Edge efficiency: ratio of track segments to total edges in the graph 

▪ Key assumptions: 1) no noise hits and 2) one hit per layer per particle

9

(special high-pileup run) pT threshold used to 
modulate graph size 

Truth labels:

Track Segments
False Edges
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Tracks are observed 
to be well-localized in 
𝜂-𝜙 space

(𝜂 defined w.r.t. spatial 
coordinates)

HEP.TrkX+
Pixel barrel+endcap graph construction method

DBSCAN
HEP.TrkX+ construction plus requirement that edges 
correspond to hits in the same DBSCAN 𝜂-𝜙 cluster 

▪ Barrel intersection cut: reject edges between the 
barrel layers and endcap layers intersecting with an 
intermediate barrel layer

▪ Loop over pairs of layers, draw edges between hits 
satisfying geometric constraints on:

𝜙𝑠𝑙𝑜𝑝𝑒 𝑖, 𝑗 =
𝜙𝑗 −𝜙𝑖

rj − r𝑖
𝑧0 𝑖, 𝑗 = 𝑧𝑖 − 𝑟𝑖 ×

𝑧𝑗 − 𝑧𝑖

𝑟𝑗 − 𝑟𝑖

Example of DBSCAN hit clustering



2. Edge Classification 

▪ Adapted the Interaction Network (IN) architecture to the problem of edge 
classification

▪ Relational Reasoning: compute interaction effects between objects 

▪ Object Reasoning: aggregate effects, update object features  

▪ Each of these reasoning steps represents a learnable function 11

Interaction Networks arXiv:1612.00222
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GNN Architecture
▪ Classic IN architecture plus an 

additional relational reasoning 
step to produce edge weights

▪ 3 NN models, each with separate 
weights

▪ 6448 total trainable parameters 

▪ Sigmoid constrains output to 
range (0,1)

▪ “Block” layout, in general with 
many iterations of the core IN, 
is the new paradigm 

▪ Implemented with explicit 
matrix multiplications in 
PyTorch

Graph input 

Edge Block 1

Node Block 

Edge Block 2
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Optimization
▪ Binary cross-entropy loss function 

Targets: 

Predictions: Training Specs
- 1000/400/100 train/test/validation split for 

HEP.TrkX+ graphs at various pT thresholds
- Adam optimizer with a scheduled learning rate 

decay
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pT
min = 1 GeV 

Loss: 6.0×10−3

Accuracy: 99.81%
Errors: 57/29,661 edges

Models trained on train_1 sample graphs 
were tested on 500 graphs from the 
train_2 sample at various pT

min thresholds



15

Inference Timing
GPU: Nvidia Titan Xp GPU with 12 GB RAM 

CPU: 12-core Intel XeonCPU E5-2650 v4 @ 2.20 GHz

Graphs exceed 
12 GB during 
inference

Substantial 
performance boost 
from heterogeneous 
resources like GPUs

Averaged best inference 
time at each pT

min
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Accelerating Inference
▪ PyTorch Geometric offers a promising 

alternative using the MessagePassing base 
class

▪ Sparse edge representation vs. full 
adjacency matrices

▪ Alternative IN representation as a 
message passing NN 

Graph Sizes

CMS tracker layout

PyTorch Geometric (PyG) Data Class 

O( Nedges ) 
representation

https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html



3. Track Building 

▪ Clustering algorithms leverage GNN predictions to build tracks 

▪ DBSCAN: iteratively build clusters among neighboring connected points

▪ UnionFind: separate disjoint sets to form tracks 
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DBSCAN clusters 
connected hits in space

Unionfind builds disjoint sets 
via edge-weighted connectivity   

https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg

Edge 𝑖 rejected if edge weight 𝑤𝑖 < 𝛿∗, 
where 𝛿∗ is the threshold at which the true
positive rate (TPR) equals the true negative 
rate (TNR) in a validation sample 

SOURCE: 93willy, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons SOURCE: Chire, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
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Cluster Efficiency 

𝜖𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
𝑁𝑠𝑎𝑚𝑒 𝐼𝐷

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑁𝑠𝑎𝑚𝑒 𝑝𝐼𝐷 = # clusters containing 

only hits generated by 
the same particle 

Physics Efficiency 

𝜖𝑝ℎ𝑦𝑠𝑖𝑐𝑠 =
𝑁>50%
𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑁>50% = # clusters containing >50%
hits from the same ID,
where >50% of that ID’s hits 
are in the cluster

Tight Efficiency 

𝜖𝑡𝑖𝑔ℎ𝑡 =
𝑁𝑎𝑙𝑙 ℎ𝑖𝑡𝑠
𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑁𝑎𝑙𝑙 ℎ𝑖𝑡𝑠 = # clusters containing only 
hits from the same ID and
every hit assigned to that
ID
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Edge Classification
▪ Perform full suite of measurements using DBSCAN 

graphs

▪ Produce measurements for the PyTorch Geometric 
message-passing IN implementation

Graph Construction
▪ Explore additional clustering strategies

▪ Implement on-chip graph construction algorithms

Upcoming Work

Track Building 
▪ Compare additional clustering algorithms

▪ Explore learned strategies that take into account the 
specific values of the edge weights

▪ Sync measurements with CMS/ATLAS definitions for 
more direct comparison

Conclusion
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Backup Material: 



Message Passing GNNs
▪ The message passing neural network 

(MPNN) framework was proposed to 
summarize the overlapping behavior 
of several GNN models 

▪ See Neural Message Passing for 
Quantum Chemistry (arXiv:1704.01212)

https://arxiv.org/pdf/1812.08434.pdf, https://pytorch-
geometric.readthedocs.io/en/latest/notes/create_gnn.html

messages passed 
within neighborhood

messages
aggregated

update node 
embedding

sum, mean, max, etc. 
(must be permutation invariant) 

multi-layer perceptrons (MLPs) 

Message Passing Scheme

https://arxiv.org/pdf/1812.08434.pdf
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
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HL-LHC CMS Tracking 
▪ Tracking information will be 

available at the Level 1 (L1) trigger 
in the HL-LHC era

▪ L1 trigger rates and latency will 
increase to 750 kHz and 12.5 us 

▪ HLT tracking becomes challenging 
in high-pileup scenarios 

▪ During Run 2, HLT tracking took 
35% of the reconstruction time 

▪ Seeding should still take place in 
the Inner Tracker (pixel layers, 4 in 
the barrel, ~10(x2) in the endcaps)

▪ Reduced cluster merging due to 
high granularity pixels

▪ Ability to reconstruct low pT tracks

2016 HLT computing limit

Worse-than-linear 
scaling with pileup 
at the HLT

Projected high-pileup 
tracking efficiency for 
various seeding strategies 

https://doi.org/10.1051/epjconf/201715000001
https://arxiv.org/abs/2003.06460

https://doi.org/10.1051/epjconf/201715000001
https://arxiv.org/abs/2003.06460
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Hyperparameter Scans
▪ Architecture optimized on 1 GeV 

graphs; key assumptions:

▪ Each MLP has the same number of 
hidden layers (2)

▪ Each MLP has the same number of 
hidden units in each hidden layer 

▪ Observed a boost in performance 
after ~30-40 hidden units per layer
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IN Matrix Scheme
Begin with an attributed, directed multigraph 
G comprised of No objects and NR relations

▪ Graph:
G = <O, R>

▪ Objects: 
O = {oj} where j = 1, …, No

▪ Relations:
R = { <i, j, rk>k } where k = 1, …, NR

and i ≠ j

▪ External Effects
X = {xj} where j = 1, …, No

റ𝑥 = {(𝑟1, 𝜙1, 𝑧1), 𝑟2, 𝜙2, 𝑧2 , …, (𝑟𝑁, 𝜙𝑁, 𝑧𝑁)}

𝑹𝑖 ℎ𝑠 (segment s incoming to hit h)
𝑹𝑜 ℎ𝑠 (segment s outgoing from hit h)

noise modeling, etc.

Well-suited for our problem: 
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where O = റ𝑥𝑇

𝑅𝑟 = 𝑹𝑖 ℎ𝑠 (receiver relations)
𝑅𝑠 = 𝑹𝑜 ℎ𝑠 (sender relations)

𝑅𝑎 = {(𝑎1), (𝑎2), … , (𝑎𝑁)}, 𝑎𝑖 = ൜
1 𝑠𝑎𝑚𝑒 𝑙𝑎𝑦𝑒𝑟
0 𝑐𝑟𝑜𝑠𝑠 𝑙𝑎𝑦𝑒𝑟𝑠

Marshalling Function:
Re-arranges objects and relations 
into interaction terms 

m(G) = [ ORr ; ORs ; Ra ]

Relational Network:
Predicts the effect of each 
interaction by applying a MLP to 
each interaction term

ΦR(m(G)) = E 
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Aggregation:
Sums effects for each receiver, 
combines with objects and 
external effects

a(G, X, E) = [O; X; ത𝐸] = C

Object Model:
Applies a MLP to determine how 
interactions and dynamics 
influence the objects

ΦR(C) = P

where ത𝐸 = ERr
T
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Interaction Network:
Applies relational and object models 
in stages to infer abstract 
interactions and object dynamics

▪ Interaction Network:

IN(G) = Φo( a(G, X, ΦR( m(G) ) ))

▪ Marshalling: 
IN(G) = Φo( a(G, X, ΦR(B) ))

▪ Relational Model:
IN(G) = Φo( a(G, X,E) )

▪ Aggregation: 
IN(G) = Φo(C)

▪ Object Model:
IN(G) = P


