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Overview:

* Qur group studies GNN-based
tracking workflows

= Experimental ML approaches

= Acceleration via heterogeneous
resources

= This work is focused on the

Interaction Network GNN architecture
adapted to the task of edge
classification

= We present a set of measurements at
each stage of GNN-based tracking:

1) Graph Construction
2) Edge Classification
3) Track Building

o B L. ..
(@ hep About > Connect > Activities~ Fellows Jobs

Accelerated GNN Tracking

The tracking of charged particles produced in collisions at colliders is a crucial aspect of the
science program in the experiments. One of the primary challenges for the HL-LHC is the ability
to efficiently, accurately, and rapidly perform tracking in collision events with large interaction
pile-up. This project aims to improve charged-particle tracking in the ATLAS and CMS
experiments through the use of Geometric Deep Learn methods (particularly Graph Neural
Networks (GNNs)) and hardware-based acceleration (currently focused on FPGAs). —

Most current GNN-based approaches to tracking proceed in three distinct stages: graphs are
constructed from point cloud of hits in the tracker, the graphs are processed through a GNN to
predict a score for each edge (high scores indicate that the edge like belongs to a true particle
track, low scores indicate it is a spurious or noise edge), and finally a clustering or graph walk
algorithm is used to group the high-scored edges into track candidates. We are studying
innovations and optimizations at all three stages of this pipeline. We are also exploring alternate
‘one-shot’ architectures that are trainable end-to-end and go from point-clouds to track
candidates with fit parameters in a single pass.

Project homepage: https://iris-hep.org/projects/accel-gnn-tracking.html



Local Reconstruction

Raw data converted to 3D point
cloud of tracker hits

1) Track Seeding T \'-'"'f"': " - -
Initial track candidates (seeds) A Charged Particle TraCklng

built from 2-4 pixel hits = Tracks provide crucial measurements

. of charged particle trajectories

52) Track Finding . Full K . el
Tracks extrapolated outward by a ull track reconstruction os:curs offline
- Kalman filter, additional hits added " Reduced track reconstruction at the

: High-Level Trigger (HLT)

- 3) Track Fitting

Track parameters estimated from
- each trajectory

4) Track Selection
- Track quality metrics computed,
suboptimal tracks discarded




At the HL-LHC, instantaneous luminosity increases
to 5 x 10 cm™*s7, delivering 250 fb~' per year

CMS Simulation, s = 13 TeV, it + PU, BX=25ns

60— —=— Full Reco —— Track Reco

Time/Event [a.u.]

1]
]

i

{lllllll |
il

6

High-pileup scenario, at or algove‘<PU;=140—200 A ; = / —



@
O
Tracker Data Hitgraph ‘s
& /0//
;.
¢
Track Hits Nodes: hits themselves
= Event y|elds NhitS = |ndices: [0, 1, 2, Nhits'1 ]
= Indices: [0, 1, 2, ... Npjs-1] = Features: [(ry, o, 20), (11, $1,21), - ]
= Positions: [(ty, ¢o, 20), (1, d1,21), - ] Edges: track segment hypotheses
= Connecttwo hits: e;; between hits i and j
: / = Construct N,q44.s edges for the event
= Each edge is true or false: y € {0,1}"edges
- = Geometric Features: e;; = [Ar;;, Ap;;, Az;;, AR;;
Track Hits as Graphs = 87y Ay, Bz ARy

Figure Source: https://arxiv.org/pdf/2012.01249.pdf



GNNs: High-Level View

Edge update

Information is
aggregated across
local structure
specified edges

In general, GNNs
operate in a
learned latent
space

Figure Source: https://deepmind.com/blog/article/Towards-understanding-glasses-with-graph-neural-networks

Graph Neural Networks

= GNNs are well-suited to inference on
tracker data:
= Hits have irregular structure
= Ability to leverage local geometric
information
= GNNs aggregate information in graph-
structured data to learn a new
embedding

= Subsequent predictions are made on the
learned representation of the graph



1. Graph Construction:
Convert tracker data to a hitgraph

© - nodes (detector hits)
= edges (possible trajectories)
= true particle trajectory

............................................................................................................................................................

2. GNN Inference:
- Edge classification, predict edge : 0.02
. weights (probabilities that edges
are real track segments)

Three Key Stages of

GNN-based Tracking

/' = edge predicted to be true
/ =edge predicted to be false

3. Track Building:
. Cut edge weights below some
- threshold, apply clustering

algorithm to extract tracks 092
: 0.86

Output: hit clusters 085

...........................................................................................................................................



TrackML Generic Tracker
A [
~ 1000 — 4
. . TrackML Dataset
800 —+ 2
g ; * The following experiments are performed
600 —t
- on Kaggle's TrackML dataset
142 13 14 . :
5 ; = The TrackML detector is a generalized
20— - e ’ . LHC-style tracker
: | ==Il1]]
o rA LTI W TR = Events are generated with <PU> = 200
z [mm] o0 =
. ) = We focus specifically on the pixel detector:
, y ‘ * Improving track seeding
Phase-2 CMS Tracker Upgrade Phase-Il ATLAS ITK Upgrade = No h|tgraph segmentation
E 1400;*ATLAlS$imullation ‘Prehmllnary ‘ e
S ::u ::n ::n ”u ::n o 10004
:: ||:: ||:: ||:: n:: ||:: » Zzz—— ‘ l ‘ J( ‘ ‘ TrackML Pixel Tracker
:j_:? 2003 ri u* e e i

E)

- Wy oy 1y My hy
i I Il i 0
200
=TI L :
= L L | L —buuﬂ ¢¢+r‘r \ 4i4174 F— .
o 0 o0 e il e O =
® 00 500 1000 1500 2000 2500 3000 3500 E
z [mm] ':
0

-1000 1000

Figure Source: https.//www.kaggle.com/c/trackml-particle-identification



r [m]

pr > 1p5 GeV

0.175 1

0.150 1 ::
0.125 1
0.1001 -

0.075{

0.050 -

0.025 -

W BCENE MR
o RORCR

1. Graph Construction

Goal: build graphs in the pixel layers simultaneously maximizing:
= Jruth efficiency: fraction of total track segments contained in the graph
= Edge efficiency: ratio of track segments to total edges in the graph

Key assumptions: 1) no noise hits and 2) one hit per layer per particle

prthreshold used to
modulate graph size

Truth labels:

Track Segments
False Edges




. HEP.TrkX+

Pixel barrel+endcap graph construction method
= Loop over pairs of layers, draw edges between hits > 0997 _
satisfying geometric constraints on: g { {A +,
b o . = 0.981 | I ' —
¢slope(l ])— —l Zo(l,])ZZi—T‘iX ]__ l 5 L ,
r; Tj—Tj 5 E
; F 097
= Barrel intersection cut: reject edges between the : ggzgr:;u
barrel layers and endcap layers intersecting withan 0.96
intermediate barrel layer ’
B — 0.8 -
>
: HEP.TrkX+ construction plus requirement that edges e 007 @
i correspond to hits in the same DBSCAN 7-¢ cluster K,
5 04- . ¢
Q
5 ! ¢
Tracks are observed I
to be well-localized in { ] L
n-¢ space 0.0 0‘.? P : . -
.5 0. dD 1 1.5
(n defined w.r.t. spatial pIin [GeV]
coordinates)

10



a. Relational reasoning Object reasoning
' -’ "" Objects, e Effects .i—“‘ Predictions, lv‘
relations inferences
Compute interaction Apply object dynamics
i \ 61:[01;33‘1;0] P1
b1 = [02;01;71] e1
T peap— co = [02; 25 €1 + ea]||fo)|P2
- s 2 = [09; 035 2] 2| =
______________________________ gy LG3= l03; x3; 0] D3

Interaction Networks arXiv:1612.00222

2. Edge Classification

= Adapted the Interaction Network (IN) architecture to the problem of edge
classification

= Relational Reasoning: compute interaction effects between objects
» Object Reasoning. aggregate effects, update object features

= Each of these reasoning steps represents a learnable function 11



GNN Architecture

= Classic IN architecture plus an
additional relational reasoning
step to produce edge weights

= 3 NN models, each with separate
weights

= 6448 total trainable parameters
= Sigmoid constrains output to
range (0,1)
» “Block” layout, in general with
many iterations of the core IN,
Is the new paradigm

" Implemented with explicit
matrix multiplications in
PyTorch

—{ 6~ (X.Ro,Ri, R,)|

Interaction Terms ]

[R: X, R, X, R,]

4 v B, Y
4 ) D
WEIDYWAL |
Rnedge..xw < ’,';Re LU/ <= Re LU: R edges x4
i Y Yo | —< [ ~—"L J

<t <t
o . o
\Pr Edge Re-embedding Yy,
Aggregation: [X, RT E|
\ 4
R™hits X7 < | (ReLU) & ’\ReLU:W R ™hits X3
Y Yo| 7— |leor— )
<t <t
do Node Re-embedding
_Interaction Network
Interqction ]’erms
[RiX, R, X, E]
\ 4
( ‘ k.
]R"cdyuxm 2| (ReLU) | & | (ReLU) RMedses | (o
} o S— (=3 ~—N1 5 s
Ay <t
o Edge Weight Predicti
\_Pr ge Weight Prediction )

Graph input

Edge Block 1

Node Block

Edge Block 2

12



—e— pPin=2 GeV
0.030 A piin=1.5 GeV
—— pPin=1 GeV
—— piin=0.75 GeV
—e— pPin=0.6 GeV

0.025 A

0.020 -

Test Loss

0.015 A

0.010 A

0.005 -

Epoch

Training Specs

- 1000/400/100 train/test/validation split for
HEP.TrkX+ graphs at various p;thresholds

- Adam optimizer with a scheduled learning rate
decay

Optimization

* Binary cross-entropy loss function

Nedges

£, Wi @) = = > (yilogw; + (1 = y) log(1 — wy))
i=1

Targets: Viks {0, 1}

ST w; € (0, 1)




Edge Classification Error Rate

r[m]

A § a
A A 4
o - /. 4
b ) 1 g ¥
N % -0 -
: | \ W g 4
8 N ¥ %
|
TN / 5
1 | 2
ARN \ A
\ W\ £
AR / %
\\“\ | 4
AN Z -
W | ¢ ;
) 47
2’
%
' 4
B

Training p"" [GeV]

B True Positive
~HEE True Negative
B False Positive

False Negative : :

; - 2 1.5 1 0.75 0.6

—1.5 15 Testing pI'" [GeV]
z[m]

LAY

s/ V/tm/lﬁ#///y iga

0.02 A

py™in=1GeV

. Loss: 6.0x107° . i Models trained on train_1 sample graphs

. Accuracy: 99.81% . were tested on 500 graphs from the
Errors: 57/29,661 edges . itrain_2 sample at various p;™" thresholds

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

14



Averaged best inference
time at each p;mn

. Inference Timing
. GPU: Nvidia Titan Xp GPU with 12 GB RAM

CPU: 12-core Intel XeonCPU E5-2650 v4 @ 2.20 GHz

i [GeV] HEP. TrkX HEP. TrkX+

T CPU [ms] GPU [ms] | CPU [ms] GPU [ms] : f Substantial N
2 1.5+0.2 0.8+002 | 29+0.6 0.9 +0.03 performance boost
1.5 2.8+0.1 0.8+0.01 | 13.1+5.5 1.0+02 < from heterogeneous
1 11.1+£3.5 1.0+0.1 130.7 £ 60.7 8.0+4.0 : resources like GPUs
0.75 44.6 + 18.0 29+1.3 686.2 + 281.2 44.3 + 18.8 - <
0.6 131.0+429 84+2.7 1954.0 + 7247 —
0.5 2502 +77.8 16.0+52 | 19520+717.0 —

Graphs exceed
12 GB during
inference

15



Accelerating Inference

® ¥ HEPTkX+
. - # & DBSCAN
= PyTorch Geometric offers a promising 104 B
alternative using the MessagePassing base P ] B
class L2
= Sparse edge representation vs. full e
adjacency matrices
Alternative IN representation as a ey | | H
message passing NN 0.5 0.6 0.75 1 15 >

pr" [GeV]

PyTorch Geometric (PyG) Data Class | & }}

import torch
from torch_geometric.data import Data

104
Emlz—l :c1=15 : ]
edge_index = torch.tensor([[0, 1], H : H ]

nedges

i :
[1»‘ 2]1 i |
g e L T
x = torch.tensor([[-1], [@], [1]], dtype=torch.f : :
0( Nedges) : [ , l | | I
. : 0.5 0.6 0.75 1 15 :
data = Data(x=x, edge_index=edge_index.t().contiguous()) representation : .
>>> Data(edge_index=[2, 4], x=[3, 1]) o

https.//pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html




4 N\

Edge i rejected if edge weight w; < 6,

where 5* IS the threshold at Wh|Ch the true .................................................................................................................

positive rat_e (TPR). eql_Jals the true negative ' DBSCAN clusters

rate (TNR) in a validation sample .
connected hits in space :

.

. Unionfind builds disjoint sets
. via edge-weighted connectivity

@@@@@@@
(1 2 5 6 @Q@

E SOURCE: 93willy, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons : * SOURCE: Chire, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
H :

3. Track Building

» Clustering algorithms leverage GNN predictions to build tracks

= DBSCAN: iteratively build clusters among neighboring connected points
= UnionFind: separate disjoint sets to form tracks

17

https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg



: Cluster Efficiency : Physics Efficiency : Tight Efficiency
: 1.00 :: 1007 i 0.95 -
f SR S i |
0.98 - 1 0.95 i ; 090 - I{
R 1 B Gt 0.85 1
! A 1
g 0.04 I & 0.85 } € 0.80 {
w I} E
7 o { 7 0.80 5075 {
© 0.90 Hoa "
: 0.70 A
fi 0751
0.88 - 0.65 -
i ¢ DBSCAN :
0.86 - I — { § union-find {
: ; ; ; i , ; ; ; — i 0.60 1 ; : . :
0.6 0.75 1 1.5 2 i 0.6 0.75 1 1.5 2 0.6 0.75 1 1.5 2
PPN [GeV] i pin [GeV] pTn [GeV]
: Nsame ID . N>50% i . Nall hits
: €cluster = N . it Ephysics = Nooore ;i Etight = N
: clusters particles clusters

Ny nits = # clusters containing only
¥ hits from the same ID and
every hit assigned to that

| N>so, = # clusters containing >50%
hits from the same ID, ¥
where >50% of that ID’s hits ::
are in the cluster ID

Nsame pip = # clusters containing
: only hits generated by
the same particle



Upcoming Work

;Graph Construction
= Explore additional clustering strategies
= Implement on-chip graph construction algorithms

. Edge Classification

= Perform full suite of measurements using DBSCAN
. graphs

= Produce measurements for the PyTorch Geometric
. message-passing IN implementation

..................................................................................................................................................................

Conclusion

Track Building
= Compare additional clustering algorithms

= Explore learned strategies that take into account the
- specific values of the edge weights

= Sync measurements with CMS/ATLAS definitions for
. more direct comparison
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Message Passing Scheme

k k— b= b
XE ) _ ’Y(k) (xg l)a[:'je/\/(i) ¢(k) (XE 1),X§- 1),ej,i))

;l—;%—:/

update node messages messages passed
embedding aggregated within neighborhood

sum, mean, makx, etc.
(must be permutation invariant)

DJEN(%) —_—

¢(k) ,Y(k) — multi-layer perceptrons (MLPs)

Edge update

tps://arxiv.org/pdf/1812.08434.pdf, https://pytorch-

Message Passing GNNs

= The message passing neural network
(MPNN) framework was proposed to
summarize the overlapping behavior
of several GNN models

» See Neural Message Passing for
Quantum Chemistry (arXiv:1704.01212)

22
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CMS Preliminary 13 TeV
- 2016 HLT computing limit

r )

n
a
o

n
o
o

HL-LHC CMS Tracking

= Tracking information will be
available at the Level 1 (L1) trigger
in the HL-LHC era

Worse-than-linear
scaling with pileup
at the HLT

average processing time [ms]
—
(%))
o
I

—
o
=]
I
“\
HN

..\.

v b by b b v by v b s b s by by
0 2 4 6 8 10 12 14 16 18 20
average inst. luminosity x10% [Hz cm™]

(=}
rTrryrr7rryrrrr77orTT

= L1trigger rates and latency will
increase to 750 kHz and 12.5 us

1CMS Simulation preliminary 14 TeV

>
= HLT tracking becomes challenging g L
in high-pileup scenarios 5 o7t m
= During Run 2, HLT tracking took el e Projected high-pileup
. . O +LowPtQuadruple 1 11
35% of the reconstruction time E b B Biowemipe tracking eff'g_'e“q; f°tr _
. . . g 1 +DetachedQuadruple various seeding sirategies
= Seeding should still take place in os— il Leaceiuase ’ 0
. . 0.2F ]
the Inner Tracker (pixel layers, 4 in "y EDJ tf event tracks (PU=140)
. - J ¢Ii°<3.5 cm . |
the barrel, ~10(x2) in the endcaps) S T
» Reduced cluster merging due to Simulated track p_ (GeV)
high granu[a rity pixe[s Iteration ~ Step Name Seeding Target Track
" 0 HighPtQuadrupl ixel quadrupl _high
= Ability to reconstruct low p;tracks I Highpgﬁzg P {;2121 ?r]iJSIertl;p w Eiﬁﬁgt, hiﬁh ,fl
2 DetachedQuadruplet  pixel quadruplets displaced
3 LowPtQuadruplet pixel quadruplets prompt, low pr
4 LowPtTriplet pixel triplets prompt, low pr
5 Muon inside-out muon-tagged tracks  muon tracks
https://doi.org/10.1051/epjconf/201715000001 23

https://arxiv.org/abs/2003.06460
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HEP.TrkX+

DBSCAN
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Hyperparameter Scans

= Architecture optimized on 1 GeV
graphs; key assumptions:
= Each MLP has the same number of
hidden layers (2)
= Each MLP has the same number of
hidden units in each hidden layer
* Observed a boost in performance
after ~30-40 hidden units per layer

Accuracy

25




IN Matrix Scheme

Begin with an attributed, directed multigraph
G comprised of N, objects and N relations

* Graph:
G=<0,R>
* Objects:
0 ={o} wherej=1_.,N,

= Relations:

R = { <I, j, rk>k} where k =1, .., Ng
and i # |

= External Effects
X = {Xj} where j=1, .., N,

Relational reasoning Object reasoning

e e

Compute interaction Apply object dynamics

i ¥ — Toeanafl
=)
= [02; 03; 12| . 2 = [02; %2561 + €2

) v L= [o3; 3 0]

Well-suited for our problem:

x = {(r, ¢1,21), (2, P2, 22), oy (', Dy 2D}

(R;);,s (segment sincoming to hit A)
(R,);s (segment s outgoing from hit A)

noise modeling, elc.

26
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Marshalling Function:

Re-arranges objects and relations
Into interaction terms

m(G)=[OR ; OR,; R, ]

where 0 = xT

R, = (Ri)hs
Rs = (Ro)hs

(receiver relations)
(sender relations)

1 same layer
Rq = {(a1), (az), . (@)}, ai= {0 cross lay);rs

Relational Network:

Predicts the effect of each
interaction by applying a MLP to
each interaction term

d(m(G)) =E

Relational reaso

a.
= v‘:\,. Objects,
relations,

ning Object reasoning

SR
e AAAM R &~

Predictions,
inferences

Compute interaction Apply object dynamics
P @y SN e
O = [02;01; 7] |Cl [01; 213 ) |
@ r — [02'03'r2] co = [02; X2; €1 + €3]
-~ _ I ) 3 =
Rl T R _74 c3 = [03; 23;0]

Relational reaso

a.
| o
b. (0 -
@ T *En>|b1 = [02; 01;7f|
7'2 s |b2=[02;03;7"2

---------------------

ning

Object reasoning

Compute interaction

Predictions)
inferences

Apply object dynamics

lc1 = [o1;21;0]

c3 = [o3; x3; 0]

|C2 = [0; T5 €1 + €]

27
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Aggregation:
Sums effects for each receiver,

combines with objects and
external effects

a(G, X, E)=[0:; X: E]1=C

where E = ERT

Object Model:

Applies a MLP to determine how
interactions and dynamics
influence the objects

a.
= v‘:\,. Objects,
relations,

Relational reasoning

ST
e n s fia

Compute interaction

02;01;71 |
{02;03;?”2}|

b-rl—"(
e D &
ca = [09; 25 €1 + €3]
QU e 2 A [l

..............................

a.
k., v—*:\,. Objects,
relations,

Relational reasoning

Compute interaction

>4 (b =
r._[">|bz=

Dy

Object reasoning

Fa Predictions, g‘\
s inferences o

Apply object dynamics

— =5
’"' c1 = [01;21; 0] ;l

HEH

-

)

Object reasoning

Predictions, ;‘\
inferences l o/

Apply object dynamics

S\

] lc1 = [o1;21;0]

(&

@ Co = [02;.'1,'2;61 + 62]
-V | =

vy = [03; x3; 0]

HEH
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Interaction Network:

Applies relational and object models
in stages to infer abstract
interactions and object dynamics

= |nteraction Network:

IN(G) = ®_(a(G, X, Px(m(G))))

= Marshalling:
IN(G) = D_(a(G, X, P(B)))
= Relational Model:
IN(G) = P(a(G, X,E))
= Aggregation:
IN(GEXOR(®
= Object Model:
IN(G) =P

"/ \f\.' ects
relations,

b. (0 .o =y
@ 7‘ 4 |b1 = [02;01;7'1” E‘L>
(0372~ . - [b2 = [02; 03; 73] -

'''''''''''''''''''''''''''''''''''''''''''''''''''''''' v

Relational reasoning Object reasoning

Compute interaction Apply object dynamics

lc1 = [o1;1;0] |

b

HEH

co = [02;X2; €1 + €3]
=
c3 = [03; x3; 0]
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