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Motivation
Consider a problem of separating π0 from photons using machine learning algorithms.
There is a complication in the problem: the calibration sample is quite different from
the real background. Let’s formulate it in a more general way: there are two obvious
problems of constructing classifier in the case of continuous spectrum:
• We want to avoid dependence on the training sample
• We want to train a classifier on the training sample only once, avoiding this

procedure in the future when changing spectra
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Possible solution
What can we do to avoid these difficulties?
• Let’s divide the spectrum into a number of baskets, for each of which we build its

own classifier, that maximizes the area under the ROC curve.
• We obtain tolerance to changes in the distribution due to a) their narrowness, b)

tolerance of ROC AUC to imbalance classes.
• Now we can solve the problem of maximizing the signal level for a given

background level; to do this, we need to select a cut-off threshold in each basket
so that for a given amount of background events across all baskets, the sum of
signal events is maximum, i.e. solve the optimization problem.
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Problem-1

• mi - number of noise events for the i-th basket,
• ni - number of signal events for the i-th basket,
• ξi - fraction of noise events for the i-th basket,
• α - target signal efficiency,
• fi - ROC-curve for the i-th basket
• N - number of baskets.

min
ξ

N∑
i=1

miξi

s.t.
∑N

i=1 fi(ξi)ni∑N
i=1 ni

= α
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Problem-2

min
ξ

N∑
i=1

miξi

s.t.
∑N

i=1 fi(ξi)ni∑N
i=1 ni

= α
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Procedure
Optimization procedure includes 2 steps:
• the projection of the gradient onto the tangent plane
• lowering the vector to the surface of constraints
• repeating the first 2 steps until convergence
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Toy example

Parameterize 2 families of distributions:
• Distribution 1: two Gaussians with centers at (−X , X ) and (X , −X ) and fixed

variance.
• Distribution 2: two Gaussians with centers at (Y , Y ) and (−Y , −Y ) and fixed

variance.
Our goal is to train the procedure on a given sample with parameters X1 and Y1

(sample A), and then apply the classifier to another sample with parameters X2 and Y2

(sample B), measuring score of the result.
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Distributions
• ...

(a) Toy sample. X and Y define
distances represented by red and
green lines (b) X and Y distributions for sample A (c) X and Y distributions for sample B

Figure: Toy example distributions
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Classifiers

• 4 classifier were built in the experiment. The first one was trained on a test
sample (sample A), and tested on a target sample (sample B).
• The second one was trained on a target sample and tested on a target sample.
• The third and fourth (with 3 and 7 baskets, respectively) are basket classifiers,

which were trained on a test sample and tested on a target sample.
• It is reasonable to expect that we will get the following ranking in terms of quality:

the first classifier will demonstrate the worst quality, the second one - the best,
and the basket classifiers will be located between them.
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Scores
• Let’s take a look at the results:

Figure: green line - efficiency for case (1), black line - efficiency for case (2), orange line - basket classifier with 3
baskets, blue - basket classifier with 7 baskets

The graph clearly shows that our assumptions were fully justified. The classifiers are
indeed clearly ranked in terms of quality.Scores 11/13



Conclusions

• In this paper, we present a concept of basket-based dynamic classifier.
• Such classifier demonstrates a tolerance to significant variations of the spectrum

of the target analyzed data from data used for training.
• The procedure of fast adjustment of the basket-based classifier for a given

analysis performance is also shown.
• In case of real experiments, such a basket-based classifier may be trained and

validated only once in advance of data analyses. Further adjustments to real
spectra of particular data analyses does not require re-training if using a priori
knowledge of shapes of the target data sets.
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The End
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