Track finding for the PANDA detector based on Hough transformations

19.05.2021 | vCHEP2021 | Anna Alicke

INTRODUCTION

INTRODUCTION

The PANDA detector

TRACKING

HOW TO INCLUDE THE ISOCHRONE INFORMATION IN TRACKING?

Particle is tangent to the isochrone

TRACKING

HOW TO INCLUDE THE ISOCHRONE INFORMATION IN TRACKING?

Particle is tangent to the isochrone

- Find a circle that connects other circles
- Well known mathematical problem:

→ Problem of Apollonius

- → 8 Apollonius circles in total
- → Calculate all hit combinations for a Hough transformation to determine the track parameters

TRACKING

HOW TO USE THE APOLLONIUS PROBLEM FOR TRACKING?

HOUGH TRANSFORMATION

- For each hit generate all tracks (circles) compatible with it
- Collect generated circle parameters (2D Hough Space)
- most frequent values = parameters of actual tracks

 \rightarrow 2 hits + IP for Apollonius

Further information

Conference paper

EVALUATION

panda

- data sample:
 - ~ 4 tracks/event
 - p_T ~ 200 MeV/c
- ghosts: wrong combination of hits creating a track
- clones: one track found several times

Efficiency (primaries)	ghosts	clones	Runtime [ms/event]
83.2 %	6.8 %	15.4 %	36

- algorithm for clone merging in preparation
- speed up: GPU (apollonius calculation)
 ~ 23 (1.5 ms/event)

SUMMARY

- Introduction into tracking with Hough transformations (HoughTrackFinder)
 - Basic idea of how to include the isochrone information.
 - Evaluation: efficiency and ghost ratio already as good as currently best track finder in PANDA
- Further development:
 - GPU calculation

Thank you for your attention!

WORKING PRINCIPLE OF THE TRACK FINDER

Preselection:

Stt Hits: Cellular Automaton

MVD/GEM Hits: Segmentation

WORKING PRINCIPLE OF THE TRACK FINDER

2. Hough Transformation

Apollonius calculation

Hough Transformation

WORKING PRINCIPLE OF THE TRACK FINDER

3. Merging of tracklets:

Tracklets of one particle track are closer as the one of different tracks

→ distance of maxima in Hough space as merging criterion

