

Dejan Golubovic Ricardo Rocha Renato Cardoso Sofia Vallecorsa Ignacio Peluaga Lozada João Fernandes

21/04/2021

Introduction

- Objective:
 - Accelerate the training of Deep Learning models, while maintaining the validity of the results
 - Usage of public cloud infrastructure
- Why deploy using public cloud?
 - use of on-demand resources when a longer-term investment on-premises cannot be justified
 - Availability of a large number of GPUs
 - access to specific hardware provided by the cloud vendor (TPU, IPU,)
- TPUs vs GPUs

The Generative Adversarial Network

- 3D convolutional Generative Adversarial Network using physics constraints.
- Generates 51x51x25 pixels images, representing energy depositions in calorimeters, similar to the ones generated by Monte Carlo.
- This model was chosen because it is compute bound

Gulrukh Khattak. "3D convolutional GAN for fast simulation." EPJ Web of Conferences. Vol. 214. EDP Sciences, 2019.

Training on Google TPUs

- Tensor Processing Units (TPUs) are application-specific integrated circuits (ASICs) developed by Google in order to accelerate the machine learning workload.
 - A large two-dimensional matrix multiply unit (MXU) size of 128x128

ern CERN

Accelerating GAN training using highly parallel hardware on public cloud

4

Google Cloud Platform with Kubeflow

Resources access through CloudBank EU

- GPUs configuration
 - The Kubernetes cluster includes multiple node groups, 1 to 8 GPUs per node
 - Tests done using V100 google cloud platform
 - Results show near linear speedup
- Cost Analysis
 - The cost per epoch remains similar when increasing the number of GPUs while the training time is reduced
 - Using preemptible GPUs allows significant cost savings and should be preferred
 - The best results are achieved using preemptible TPU v3-8, which are 2.4 times cheaper than their GPU equivalent.

Google Cloud Platform with Kubeflow

Batch Size Tests

- better generalization performance
- less steps to complete
- faster training

Cluster Configuration

- optimal configuration
 - more GPUs per node
 - more GPUs per worker
- best results
 - number of workers = number of nodes
 - number of GPUs per worker = the number of GPUs per node

Stability Test

- Sub-optimal configuration makes training time instable and overall longer
- Equal number of GPUs per worker and GPUs per node keeps instability to a minimum

Further Analysis

• TPUs:

- idle time is 0.7%, with 28.5% for All-Reduce operations
- 38% for forward-pass
- 61% for back-propagation

• GPUs:

- idle time is 2.9%, mostly for All-Reduce
- Similar percentages for forward and backward propagation as the TPUs.
- Program is not input bound, 0% of the training step time was spent waiting for input
- With this profile it is possible to verify that the model is compute bound

openlab

functional_9 functional_9 functi		gradient_tape	fun	gradient_tape	fun	gradient_tape		functi functi		gradient_tape		
sequential	sequential	functi	functional_5	fun	functional_5	fun	unctional_5	functional_0	sequ	functi	functi	functional_9
con	con	c	functional_1	c	functional_1	c	unctional_1	sequential	con	c	functi	sequential
			e		0		conv3d	conv3d_4			conv3d	con conv3d_
			C		C		C	Conv3D_1			C	Con Conv3D
Conv3D	Conv3D	C	C	C	C	C	C	Con Conv3	Conv3D	C	C	Con Conv3
					ter_distributed	scriminator	in_step_104163173	41525100049,13738(826835907	25714748)			
fusi	fusio	fu	fu	fu		fu.,	fus	fusio fusion 2568	fusio	fv	fus	fusio fusion 25

Microsoft Azure with Azure's Machine Learning Service

Resources access through openlab Microsoft Azure Research enrollment

- The 3DGAN deployment uses Azure Machine Learning service
 - Abstracts the user from the underlying infrastructure detail
 - the job needs to be configured while the provisioning of the compute cluster is entirely operationalized by the Azure Machine Learning service.
- GPU-powered nodes with 24 vCPU cores, 448 GiB memory and 4 V100 GPU
- Azure optimizes the data set management according to the hardware infrastructure setup

Conclusions and Future Plans

- Efficient parallelization of the adversarial training process, the 3DGAN training time is brought down from about a week to around one hour.
- Demonstrates the deployment of scientific DL workloads using public cloud services.
- Use case deployment can be optimized in order to reduce costs
- Commoditizing access to public cloud is an efficient way of complementing on premise capacity and also go upper in the stack

Thank You

QUESTIONS?

<u>renato.cardoso@cern.ch</u> Sofia.Vallecorsa@cern.ch

Backup - GAN Training

11

Distributed training in TensorFlow

- Achieve distributed training using TensorFlow distributed Strategy tf.distribute.Strategy:
 - A TensorFlow API to distribute training across multiple GPUs, multiple machines with GPUs or TPUs.
- Can be done using a high level TensorFlow training function such as model.fit or by using a custom training loop:
 - Model.fit is not optimal due the GAN architecture
 - Use a custom training to include all the training steps

Mirrored Strategy Multi Worker Mirrored Strategy

TPU Strategy

Backup - TPUs – Tensor Processing Units

- What are TPUs:
 - Tensor Processing Units (TPUs) are application-specific integrated circuits (ASICs) developed by Google in order to accelerate the machine learning workload.

• A large two-dimensional matrix multiply unit (MXU) size of 128x128

Results

Geant4 GAN Validation plots obtained from 8 TPU cores

Validation plots obtained from 64 GPU cores

Backup - Code

Mirrored Strategy

mirrored_strategy = tf.distribute.MirroredStrategy()

Multi Worker Mirrored Strategy

os.environ["TF_CONFIG"] = json.dumps({"cluster": {
 "worker": ["host1:port", "host2:port", "host3:port]},

"task": {"type": "worker", "index": 0}})

multiworker_strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()

• TPU Strategy

tpu_address = os.environ["TPU_NAME"]
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=tpu_address)
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
tpu_strategy = tf.distribute.TPUStrategy(cluster_resolver)

