
vCHEP 2021

The Evolution of CMS Monitoring infrastructure
Christian Ariza, Valentin Kuznetsov, Federica Legger, Rahul Indra, Nikodemas Tuckus, Ceyhun Uzunoglu

2

CMS Monitoring infrastructure

✤ 5 k8s clusters

✤ 500B data points

✤ we monitor:

✤ 200+ nodes/services on VMs

✤ 100+ services on k8s

✤ 150+ alert rules

✤ 100 prod dashboards, 500+ overall

✤ 30 TB of ES data

✤ 25 TB of compressed data on HDFS

✤ 3.5M msg/hour to AMQ brokers with 7.5kHz rate
3

Complexity
of software

Volume
of data

Variability
of infra

Velocity
of collection

Monitoring has
become a data

analytics platform

Initial infrastructure (2 years in production)

NATS
subscribers VictoriaMetrics Prometheus

CMS Monitoring cluster CERN MONIT

cms-nats.cern.ch
WMAgent,

DBS,
CMSSW

Production tools feed
messages to NATS serverNATS cluster

NATS subscribers
can run anywhere

T2_US /a/b/c TaskA 8081
T2_US /c/d/e TaskB 9091
T2_UK /x/y/z TaskC 1234

NATS
subscribers

AlertManager

✤ In addition to CERN MONIT we setup
two k8s clusters

✤ monitoring cluster to run
Prometheus, VictoriaMetrics, etc.

✤ NATS cluster for real-time
monitoring

✤ We used VictoriaMetrics as back-end
storage for our Prometheus with
retention policy 30 days

✤ We setup AlertManager to handle all our
alerts

4

Learned lessons along the way

✤ Two-side sword problem: expressiveness vs concise information

✤ annotations can be useful to indicate root of the problem but their excess may overwhelm users

✤ Monitoring became an analytical tool to address various problems

✤ Data vs Infrastructure vs Visualization separation is a big benefit

✤ Develop easy to use CLI tools

✤ manage alerts, annotations, query data in various data-sources, etc.

✤ Work with open-source developers via Slack channels, GitHub issues, etc.
5

New infrastructure
✤ We moved to High-Availability mode by setting

individual k8s clusters in different zones for our main
monitoring stack

✤ Prometheus scrapes the metrics and stores them in
VictoriaMetrics (short vs long-term storage)

✤ All aggregated records redirected to separate instance
of VictoriaMetrics on dedicated k8s cluster

✤ We use Promxy to access all VictoriaMetrics servers

✤ AlertManagers relies on Hashicorp’s member list to
gossip information about notifications and silences

✤ CLI tools: SSB/GGUS parsers, alert, annotation, token
management, data access to MONIT, etc.

6

Promxy

CMS Monitoring cluster

Prometheus

VictoriaMetrics

Prometheus

VictoriaMetrics

CERN Zone A CERN Zone B

Service
or

Node

Service
or

Node

Service
or

Node

CERN MONIT
Infrastructure

Al
er

t
M

an
ag

er Alert
M

anager

AM gossip

k8s
service

VictoriaMetrics
1h egg metrics

Victora Metrics
1d, 1w, 1month metrics

Aggregation VM cluster
vmalert
services

Further improvements

✤ High-Availability provides fault-tolerant mode of operations

✤ we can upgrade our k8s cluster independently without any interruption in data processing and
availability for end-users

✤ We are considering to start data portioning across HA clusters

✤ node metrics go to cluster X, k8s metrics go to cluster Y, service metrics go to cluster Z

✤ use different resource allocations for flexible retention policies

✤ Data relabeling and long storage of dynamically aggregated records

✤ route aggregated records to dedicated VictoriaMetrics instance(s)
7

CMS Monitoring services

Intelligent alert management system

✤ Custom made service

✤ parse GGUS and SSB tickets

✤ add intelligent processing (anomalies,
silencing, tagging)

✤ annotate Grafana dashboards

✤ k8s deployment close to Alert Manager

✤ Data and experiment agnostic

✤ Can be deployed with any Prometheus/
AlertManager stack 9

Intelligent alert
management system
✤ Expandable pipeline loop

✤ Full integration with AlertManager

✤ Process Labels and Annotations

✤ Fetch ➟ Preprocess ➟ Filter ➟ Keyword
matching ➟ Add annotation ➟ ML Box ➟
Push ➟ Delete silence

✤ Currently works with GGUS and SSB
services

10

FTS Log analysis

✤ Develop pipeline to perform clustering
of FTS errors

✤ Data are processed by Sqoop job on
HDFS

✤ We apply Levenhstein distance for
clustering or can use word2vec ML
approach

✤ Data shipped back to ES via
StompAMQ

✤ Use Grafana for data visualization

FTS
data

provider

Kafka

Elastic
Search HDFS PySpark Log

Analysis

Stomp
AMQ

ML
libraries

11

CMS Monitoring CLI tools

✤ We developed all CMS Monitoring CLI tools using GoLang

✤ fast, native concurrency, static executables, easy maintenance, work on all major architectures and
OSes, no installation or setup is required

✤ majority of off-shell monitoring tools written in Go: Prometheus, VictoriaMetrics, InfluxDB, etc.

✤ GGUS, SSB parsers, annotation and alert managers, NATS sub/pub, monit tool to fetch data from
MONIT data-sources (ES, InfluxDB), token manager for CERN SSO authentication, etc.

✤ all tools available on /cvmfs/cms.cern.ch/cmsmon

✤ We also successfully use Prometheus and VictoriaMetrics tools (e.g. amtool, vmagent) in CMS
workflows

12

CMS Spider

Replica
1

Spider Celery
Workers

Flower

Redis - Checkpoint
Queue

Redis - Task Queue

Redis PV

Spider PVAffiliation
Cronjob

Spider
Cronjob */12 * * * *

Kubernetes

Replica
n

...

HTCondor schedds ➟ Processing ➟ ElasticSearch

13

Rumble service for HDFS queries

✤ Compose JSON queries over HDFS
data

✤ flexible JSONiq Query Language

✤ Rumble server (deployed on k8s) can
process user requests

✤ Hide complexity of HDFS and Spark
workflows

✤ Python and Go clients are available as
well as ability to use Jupyter notebooks

1 for $doc in json-file(
2 "/project/monitoring/archive/wmarchive/raw/metric/2021/01/01/*"

3)

4 where $doc."data"."meta_data"."jobstate" eq "failed"
5 group by $task := $doc."data"."task"
6 where count($doc) ge 1
7 return {
8 "task name": $task,

9 "count": count($doc)

10 }

Listing 1: An example of JSONiq that returns the total number of failed jobs and task names
of tasks with at least one failed job.

5 Summary

We presented an overview of the current CMS monitoring infrastructure and future develop-
ments. The choice of open-source technologies enabled us to build scalable and maintainable
applications. The development of a common monitoring infrastructure for CMS brought
several benefits: the consolidation of the resources needed to operate, maintain, and develop
the infrastructure itself and the monitoring applications, the portability of monitoring solu-
tions when using common data formats for metrics, and common visualization tools. We
regularly provide training and built a community of users of our monitoring services, so that
developments and knowledge can be shared among di↵erent groups. The deployment of the
monitoring applications and services in a Kubernetes infrastructure provided better scalability
and reduction in operational costs. We have a solid monitoring infrastructure and sustained
R&D program that allows us to cope with current and future challenges at the HL-LHC, and
actively participate to the WLCG Operational Intelligence e↵ort.

References

[1] CMS Collaboration, JINST 3 S08004 (2008)
[2] I. Sfiligoi et al., proceedings of the WRI World Congress on Computer Science and

Information Engineering, Vol. 2, 2428-432 (2009)
[3] D. Thain, T. Tannenbaum, and M. Livny, Concurrency and Computation: Practice and

Experience, Vol. 17, No. 2-4, 323-356 (2005)
[4] T. Ivanov et al, EPJ Web Conf, 03006 (2019)
[5] M. Gi↵els, Y. Guo, V. Kuznetsov, N. Magini and T. Wildish, J. Phys.: Conf. Ser., Vol. 513,

Issue 4 (2014)
[6] Barisits, M., Beermann, T., Berghaus, F. et al. Comput Softw Big Sci (2019) 3: 11
[7] I. Bird et al., CERN-LHCC-2014-014, LCG-TDR-002 (2014)
[8] C. Ariza-Porras, V. Kuznetsov, F. Legger, Comput Softw Big Sci (2021) 5:5
[9] A. Aimar, et al., J. Phys.: Conf. Ser. 898 (2017) 092033
[10] Kubernetes, https://kubernetes.io/ (2021), accessed: 2021-02-18
[11] Elasticsearch, http://elastic.co (2021), accessed: 2021-02-18
[12] Apache Hadoop, http://hadoop.apache.org (2021), accessed: 2021-02-18
[13] InfluxDB, https://www.influxdata.com/time-series-platform/influxdb/ (2021), accessed:

2021-02-18

Rumble HTTP end-point

HDFS+Spark
14

CMS Operational Intelligence
✤ Use proper architecture and tools, apply K.I.S.S. principle, e.g. you may not need a fancy ML if simple

regex matching can work for your use-case

✤ Work on architectural choices and independently test your infrastructure, services, tools, etc.

✤ Automate as much as possible, e.g. from git tag (via CI/CD) to k8s deployment

✤ Web dashboards are great for visualization but CLI tools can help you manage your services and
infrastructure at scale

✤ Data schema, validation, common notations, and standards are the keys to success

✤ It is possible to manage 500B data points, several k8s clusters just with 1 FTE

✤ Work with WLCG and Operational Intelligence groups on common use-cases and provide feedback of
various R&D efforts, see Panos’ OpInt talk at vCHEP 15

https://indico.cern.ch/event/948465/contributions/4323665/
https://indico.cern.ch/event/948465/contributions/4323665/

Towards observability platform

Monitoring Logging

Visualization Tracing

Observability

Automation

Context

Actions

16

Collect Monitor

Analyze

