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Abstract.
Particle physics experiments rely extensively on computing and data services,
making e-infrastructure an integral part of the research collaboration. Con-
structing and operating distributed computing can however be challenging for a
smaller-scale collaboration.
The Light Dark Matter eXperiment (LDMX) is a planned small-scale
accelerator-based experiment to search for dark matter in the sub-GeV mass
region. Finalizing the design of the detector relies on Monte-Carlo simulation
of expected physics processes. A distributed computing pilot project was pro-
posed to better utilize available resources at the collaborating institutes, and to
improve scalability and reproducibility.
This paper outlines the chosen lightweight distributed solution, presenting re-
quirements, the component integration steps, and the experiences using a pi-
lot system for tests with large-scale simulations. The system leverages existing
technologies wherever possible, minimizing the need for software development,
and deploys only non-intrusive components at the participating sites. The pilot
proved that integrating existing components can dramatically reduce the effort
needed to build and operate a distributed e-infrastructure, making it attainable
even for smaller research collaborations.

1 Introduction

Particle and nuclear physics experiments rely extensively on e-infrastructures (various com-
puting and data services) for generating, processing, analyzing, and storing large datasets.
While federating limited resources among collaborators enables a robust e-infrastructure, the
nature and size of available resources for construction and operation depend largely on the
scale of the collaboration. Large experimental collaborations can afford to develop, build and
operate rather complex customized infrastructure utilizing large-scale dedicated resources,
∗e-mail: lkbryng@stanford.edu; Corresponding author

ar
X

iv
:2

10
5.

02
97

7v
1 

 [
he

p-
ex

] 
 6

 M
ay

 2
02

1



such as the Worldwide LHC Computing Grid (WLCG) [1, 2]. In contrast, building and op-
erating a distributed e-infrastructure can be a substantial challenge for small to medium size
collaborations, which often lack developers, operating teams, and access to significant dedi-
cated data centers.

The Light Dark Matter eXperiment (LDMX) [3] is a planned small-scale accelerator-
based experiment to search for dark matter. The nature of dark matter is one of the most
pressing outstanding questions in particle physics. LDMX is a fixed-target missing momen-
tum experiment currently being designed to probe the sub-GeV mass range, an attractive
experimental regime for so-called thermal models with light mediators. It will hermetically
measure the interactions of an incoming electron beam, provided by the upgraded Linac Co-
herent Light Source [4] linear accelerator at SLAC, with a target. Reaching the required un-
precedented sensitivity translates both to high integrated luminosity (up to 1016 electrons on
target) and to excellent knowledge of expected backgrounds from known physics processes.

With its roughly 30 collaborators across nine institutes, LDMX is a typical example of a
small to medium size research collaboration. When it comes to e-infrastructure needs, it is no
different from many other particle physics experiments. For the design of the LDMX appa-
ratus, detailed simulations of a large number of events (incoming electrons) are required. To
obtain a sufficient sample of the rarest background processes, the total number of simulated
events needed is similar to the final number of expected events recorded in detector data. In
the first phase of data taking, LDMX is expected to need on the order of 10PB of storage for
collected data and simulations, and CPU equivalent of 1200 cores.

Experiments have options to consider before deciding on final e-infrastructure. The pos-
sibilities range from the completely centralized solution (all the data are stored and all the
computing tasks are performed at a large central data center at one of the partner sites) to
various levels of distributed systems. Both in the case of the centralized system and the dis-
tributed approach there should be a well-defined, low-barrier mechanism for collaborating
partners to integrate into the infrastructure and contribute to, and use, the resource pool. Dur-
ing 2020 the LDMX Collaboration board decided to launch a pilot project that would build
a lightweight distributed computing system (LDCS) prototype for running simulation tasks.
With such a system, LDMX could leverage and efficiently share available computing and
storage resources at collaborating institutes. Distributed IT infrastructures are often consid-
ered complex solutions consisting of numerous additional services on top of the local system;
an approach mostly suitable for large scientific collaborations. Two of the main goals of the
pilot were to prove that a lightweight system can be created using existing technologies with-
out the need for extensive new development, and to understand the effort required to operate
(run) a distributed computational infrastructure as compared to a centralized system.

In what follows, we present the philosophy behind the design of the proposed distributed
system, introduce the architecture and system components chosen, then give details of the
experience gained during the large scale simulation test campaigns and outline future work.

2 The LDMX Distributed Computing System

Initially, LDMX simulations were run with manual submission to the batch system at SLAC,
the proposed location for the detector. SLAC is the primary data storage hub for the LDMX
experiment. Any data not produced at SLAC would have to be transferred there.

LDCS was proposed as a distributed computing infrastructure alternative to a fully cen-
tralized data center. It is set up between four computing centers accessible to the LDMX
collaboration: three located in California, USA, and one in Lund, Sweden. Each center
runs a computing cluster (with a SLURM or HTCondor batch system) and has storage space
available on a shared file system. Some centers provide external access to the data (e.g. via



GridFTP protocol). The main objective of the distributed system pilot was to test if a small
experiment such as LDMX could build and reliably operate a lightweight streamlined dis-
tributed system using existing technologies, with only a minimal effort invested in component
integration. The proposed design was based on the following considerations:

• The software layer implementing the distributed system, i.e. the middleware connecting
the sites, should be lightweight, easy to deploy and operate, and preferably have a proven
track record in particle physics.

• A handful of sites would constitute the core LDMX computing infrastructure. In addition
to those “core sites”, the system should allow additional, resource-limited sites to easily
join in the longer term. The estimated number of such sites is on the order of ten.

• Core sites, LDMX Computing and Storage Centers (LCSCs), run the large scale simu-
lations and store the generated results. An LCSC is assumed to have sufficiently large
computing capacity (a large cluster with many cores) and a matching data storage capabil-
ity. An LCSC is expected to offer longer term storage capacity in addition to being a large
simulation processing unit with available matching temporary storage space.

• Execution of computational tasks would be managed via a central production gateway, the
job manager. This central service would interact with the lightweight middleware compo-
nent deployed on every LCSC cluster.

• The user administration and authentication layer would be kept centralised, i.e. creation of
individual accounts on each LCSC site should not be necessary. LDMX users would access
the data through authentication via a singular LCSC site, which hosts the “Collaboration
user management and authentication service”. User-level authentication would be required
against the central production gateway, while the gateway itself would authenticate against
the LCSC clusters via e.g. X.509 proxy credentials. All collaboration tasks running on the
LCSC resources would be executed under “LDMX proxies”.

• Job brokering would be data-driven, i.e. computational tasks should be dispatched to the
LCSC that already stores any input data needed. In case no available site has a replica of
the input data, the middleware component would take care of downloading the data. Later
a dedicated data transfer service could be integrated to manage cross-site data transfers.

• Generated data (e.g. simulation output) should always be reliably transferred to a primary
storage with the option of keeping a local copy. The data transfer functionality would be
offered by the middleware and require no manual intervention from the researchers. In
addition, a metadata record describing the generated data would be created and registered
in a data catalog which also tracks data location.

2.1 The LDCS Architecture

The guiding philosophy of LDCS is to limit necessary site development and to integrate
as few, already existing, components as possible. Leveraging existing technologies led to
combining several components already deployed within the ATLAS experiment [5] at CERN:

• An LCSC site consists of a “traditional” batch cluster connected to a site-local storage
system available to the compute nodes. The Advanced Resource Connector (ARC, see
Sec. 2.2) is deployed on the site and acts as the middleware layer, or gateway, to the cluster
and local storage. ARC provides the local layer for the data-driven task management.

• The LDCS central management layer consists of the ARC Control Tower (aCT, see
Sec. 2.3) workflow management service and the LDMX data catalog (Rucio, Sec. 2.4).



• A user-facing layer (yet-to-be developed) will provide indirect access to LCSC sites via the
aCT component.

Figure 1 illustrates the LDCS architecture. The components are described below.

Figure 1. The LDMX distributed computing system components. The LCSC sites are federated via the
ARC middleware and the two central services aCT and Rucio.

2.2 Advanced Resource Connector

The Advanced Resource Connector (ARC) [6] is developed by the NorduGrid collaboration
and has been used for almost 20 years as a means of providing computing resources to WLCG
experiments. Its lightweight design makes it an attractive choice for data centers who want
to add a secure gateway to allow batch job submission from the outside. It also provides
sophisticated data handling tools which relieve the jobs themselves from dealing with data
transfer. Finally, the fact that ARC supports the batch systems used at all four centers made
it the obvious choice for connecting them to the LDCS system.

ARC’s main service is the ARC Resource-coupled EXecution service (A-REX) which
runs on top of a computing center’s batch system and allows users authenticated via X.509
credentials to submit and run jobs on the batch system. Each center in LDCS runs an A-REX
service and accepts jobs submitted by the LDCS production certificate. When the job finishes
on the batch system, the output is uploaded by A-REX to the selected LCSC storage. Having
A-REX perform the data handling instead of the job itself brings several advantages: batch
system CPUs are not idle while the job uploads data, controlled data staging by one service
avoids chaotic transfer which may overload the remote storage, and if the remote storage is
temporarily offline A-REX can automatically retry until the transfer succeeds.

2.3 ARC Control Tower

ARC Control Tower (aCT) [7] is a service used by the ATLAS experiment to submit and
manage jobs on ARC sites in the WLCG. It consists of two parts: an application-facing side
and a resource-facing side. The application-facing side either pulls work from an experiment-
specific workflow management system or generates work from tasks defined in aCT itself.



An LDMX-specific component was developed to handle the management of LDMX tasks.
The LDMX user who is the production manager defines a batch of jobs using a plain-text
configuration file, detailing, for example, walltime needed, number of jobs, what software and
simulation steering files to run, and submits the job request to aCT. aCT creates the required
jobs, specifying the resources required for memory and walltime as well as any input files,
and passes the job to the resource-facing side. This side manages the communication with
the ARC Computing Elements at the sites, submitting new jobs and querying their status.

aCT employs an intelligent brokering algorithm to decide when and where to submit jobs.
If input data are required then it can query Rucio (see Sec. 2.4) for the location of the data, and
send the job to where the data are, in order to avoid data transfers between sites. If no input
data are required then the job will be sent to the site with the fewest queued jobs. A threshold
on the absolute and relative queue depth at each site can be tuned in the aCT configuration.

2.4 Rucio

Rucio [8] is a distributed data management system initially developed by ATLAS but now
widely adopted by many scientific communities in particle physics and beyond. It consists of
a data catalog which stores metadata and location information, and a set of daemons which
manage data movement, deletion, accounting and other functions.

The LDCS system consists of four computing sites with local storage on shared file sys-
tems, which are not accessible outside the site, and a GridFTP storage at SLAC, accessible by
the collaboration. Simulations run at all four sites, the resulting output files are stored locally
and a copy is uploaded through GridFTP to the primary storage LCSC at SLAC. The use case
for Rucio in this case is primarily as a catalog of data locations rather than for data transfer. In
addition, Rucio provides a metadata catalog of the produced simulation data, using its generic
JSON metadata system. This system allows storing and querying arbitrary key-value pairs
rather than using a fixed database schema, which for a new experiment allows far greater
flexibility in the information it stores. The LDMX simulation software prints names and val-
ues of all configurable parameters to a JSON file, which is parsed upon job completion to
construct a metadata file with the desired key-value pairs to be stored in Rucio. The database
can be queried by end users for job specific information such as walltime, software version
used, or output file location, and also for physics related parameters such as simulated beam
energy or detector details.

At the end of a simulation job, the output data file is uploaded to the selected LCSC
storage by the corresponding A-REX service. When aCT detects that the job and data upload
has completed, it downloads the metadata file from A-REX and registers its information along
with the location of the new data in Rucio. Files registered in Rucio are guaranteed to exist
since registration is only done once the transfer to the final location has succeeded.

2.5 LDMX Software

The LDMX software [9] is written in C++, based on the Geant4 [10, 11] detector simulation
application, and uses ROOT [12, 13] for persistence. The framework uses Python wrappers
for both Monte Carlo data generation and subsequent analysis. The software is packaged as a
Docker [14] container with all dependencies, and releases are uploaded to DockerHub. LDCS
uses containers converted into Singularity [15] images. The images are self contained with
no other requirement than having Singularity installed, which reliably defines and freezes
the combination of software versions and dependencies used during a certain production run.
Shared scripts are distributed to all LDCS sites by use of LDMX’s GitHub repository [9].



In addition to the Singularity image, each site configures two types of runtime environ-
ment files (RTEs), also shared through the LDMX GitHub. One sets the path to local storage
and specifies if the site should keep a local copy of the output. The other sets a path to a
specific Singularity image. During job submission, software tags are requested through the
desired Singularity image RTE, and only sites with this RTE enabled will be considered by
aCT for job submission. Individual configuration for each site, such as specifics for queuing
or usage limits, are set within the A-REX configuration file, and are hidden from the end user.

2.6 Simulation Workflow

The outcome in any given event of electrons impinging on the target is probabilistic in nature,
and, similarly to many other particle physics experiments, LDMX uses Monte-Carlo based
simulations to create an ensemble of predicted event outcomes, given certain beam and detec-
tor configurations. The Geant4 framework is used to simulate interactions of particles with
the matter in the detector. The simulations of dark matter production use simulated kinemat-
ics and probabilities from MadGraph/MadEvent [16], embedded in Geant4 for propagation
through the detector simulation. The software can be used either to generate Monte-Carlo
simulated data using input parameters, or to process input files for analysis. Standard simu-
lation jobs process on the order of a million of events each, and typically produce hundreds
of megabytes of data in a one-hour job.

2.7 Monitoring the System

A web-based dashboard was developed using Prometheus and Grafana, allowing LDMX pro-
duction managers the overview needed to observe ongoing campaigns and spot potential is-
sues. Metrics on the states of queued and running jobs, as well as Rucio storage information,
are periodically collected by aCT and published to a local Prometheus server. A Grafana
instance collects and displays this information in a collection of time-series graphs.

Figure 2. Snapshot of the LDCS dashboard, showing number of jobs in different states over time.
Different colors are different batches of jobs.

Figure 2 shows the LDCS dashboard during a simulation campaign in the second half of
December 2020. The different colors represent different batches of 5000 jobs which were



submitted over time. Each panel shows the number of jobs in each state: waiting to be
submitted, queued on a site, running, finishing (waiting for upload of the output data), finished
and failed. There were generally between 500 and 1500 jobs running, and this number varied
according to the scheduling policies of the batch systems on the sites.

Figure 3. Data storage usage over time for LDMX.

Figure 3, taken from the LDCS dashboard, shows the storage used in each Rucio-managed
storage in November and December 2020. In mid-November some data were deleted. A large
simulation campaign in the last two weeks of December produced almost 100TB of data. At
the end of 2020, Rucio was cataloging a total of almost 200TB of data in 1.7 million files.

3 Large Scale Test Campaigns

The system was exercised over several test campaigns, detailed in Table 1, allowing continu-
ous development and fine-tuning of its capabilities. The main functionalities implemented as
a result of tests are described in the following sections.

While the simulation software used during a campaign is identical across sites, each batch
system has specific characteristics such as hardware, number of computing nodes, disk space
available, and priority rules. The first two campaigns took a few days to run, and highlighted
differences in needed walltime between sites, as well as a need for a higher submission rate of
short-duration jobs to the sites more distant to the aCT (physically located in Norway). Two
longer campaigns of 225000 1-hour jobs each, lasting a few weeks, more thoroughly explored
data transfer and storage needs. Site sysadmins reported on average 1h of work, including
for site setup, for each test. One reason for the low workload for site admins during tests was
regular, low-overhead meetings, allowing predictable engagement rather than requiring site
admins to be available and responsive at any given moment.

Month Number
of jobs

Run
time

File size
(MB)

Failure
rate

Most common failure mode

April 5k 6 hours 500 44% Walltime limit; Successful job logs filling up moni-
toring machine disk; Site job cancellation policy

May 1M 6 min 20 0.6% Job exceeding memory limit
Oct 225k 1 hour 225 1% Sync problems upon repeated A-REX restarts
Dec 225k 1 hour 225 0.03% Singularity script not executing properly

Table 1. Date, total number of jobs, average run time per job, average output file size, failure rate, and
dominant failures modes, for four larger test campaigns in 2020.



Resubmission

Exit codes from the batch queue are parsed for known failure modes. Transient job failures
(exceeding walltime limits, queue preemption and internet connection glitches) will trigger
job resubmission, as the job is likely to succeed at a different site. Jobs exceeding memory
limits (which will reoccur for every new attempt) will not be resubmitted. Implementing
resubmission rules after the first campaign drastically reduced the failure rate (see Table 1).
Resubmission has not yet been implemented for poorly understood cases where Singularity
reports that the image is corrupted, despite it working well on other nodes.

Job bookkeeping and LDCS system metadata

Logs of failed jobs are retained, enabling identification of both overarching and site-specific
failure modes and exit codes. The Grafana graphical dashboard reveals characteristic time
structures in the batch queues. Figure 4 shows the the December campaign job walltimes at
each site, extracted from job metadata in Rucio. Despite identical software and simulation
tasks, the spread is significant, due to the range of different CPUs deployed in each center.
The job metadata shows rich potential for understanding the individual batch systems.

Figure 4. Distribution per site of job walltimes for the December 2020 test campaign.

Data storage and transfer

The production manager typically redirects all output to a common storage location. Site ad-
mins control whether a local copy of the job output is kept, with a parameter of the RTE. The
A-REX transfer system prevents local copies from being deleted until transfer has completed
successfully. It is also clear that at least 2000 files of O(100) MB can be held and transferred
to one single site without the transfer process becoming a significant bottleneck.

Submission automation

To further structure the output, submission of the 225000 jobs needed for the larger scale
campaigns is split into batches. Each output file is assigned to a Rucio dataset using the



Rucio concept of scope and a unique submission batch name. The number of active jobs
in the system is monitored in aCT. When it drops below a set threshold, a periodically run
submission script automatically updates batch specific parameters (such as name and job
numbers) and submits a new batch, until the desired number of batches is reached. This
automation significantly reduces the time spent by the production manager, as well as the
risk for errors introduced in manual edits of the job configuration.

4 Ongoing and Future Work

Data storage and retention is a perennial problem for large datasets. Work is underway at
Lund to create a distributed storage that can be used for intermediate calculations. The final
data will be sent to the primary storage at SLAC, to be directly accessible by all members
of LDMX, with the option to preserve copies of important data in both storage systems.
Access to the Lund storage is based on ARC’s own GridFTP storage implementation. The
performance and data load information collected by this setup will be used to assess which
technology best fulfills LDMX distributed data needs in the medium and long term.

Since the larger campaigns in 2020, data-driven job brokering as described in Sec. 2 has
been implemented. This functionality opens up possibilities of both separate reprocessing
of existing simulations, and end user analysis jobs, which will make LDCS a full-fledged
distributed computing system.

Smaller sites or individual researchers will be able to deploy an LDMX Analysis Station,
a computational unit that can perform analysis tasks on pre-fetched datasets. These datasets
would be transferred from an LCSC.

5 Conclusion

Particle physics collaborations are global affairs and utilizing the computational resources
available, in concert with one another, and with minimal administrative overhead, is a non-
trivial endeavor. LDMX is a small scale experiment with nine contributing institutes located
on both sides of the Atlantic, many of them having access to computing facilities. Therefore
it was quite a natural choice to start a distributed computing pilot and investigate if such an
infrastructure could serve LDMX in the future. The successful deployment of the LDCS e-
infrastructure has shown that a distributed computational infrastructure is both manageable
and resource efficient, with evidence that:

• Dividing the IT infrastructure over multiple sites automatically leads to knowledge transfer,
avoiding the situation where IT knowledge is concentrated at a single central site.

• The LDCS system offers protection against site-lockup, a common mistake when an IT
technology is too customized to a specific site setup, later leading to portability issues.

• LDCS offers a solution to the possible data storage and data transfer bottlenecks of the
centralised approach. Furthermore, LDCS brings protection against data transfer failures
due to the automatic transfer retries.

• Running simulation on LDCS introduced a higher level of automation and reproducibility
into the typical LDMX computing workflows, with a standardized software setup using
singularity images and the definition of a consistent LDMX metadata structure.

• With the enhanced reproducibility, LDCS also offers (limited) protection against data
losses, with the possibility of regenerating a local dataset on an LCSC site.

• LDCS enabled LDMX to take advantage of computing available during natural ebbs and
flows of computing workload which occur across the participating computing clusters.



The distributed computing pilot program for LDMX proved the feasibility of building and
running a lightweight distributed e-infrastructure for small experiments. Utilizing open-
source code with minor modifications and engaging remote sites on a regular basis, the pro-
gram successfully integrated disparate computational resources into a single compute entity
requiring minimal administrative efforts, and seamless to the scientific researcher.
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