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Abstract. With the advancement of many large HEP experiments, the 

amount of data that needs to be processed and stored has increased 

significantly, so we must upgrade computing resources and improve the 

performance of storage software. This article discusses porting the EOS 

software from the x86_64 architecture to the aarch64 architecture, with the 

aim of finding a more cost-effective storage solution. In the process of 

porting, the biggest challenge is that many dependent packages do not have 

aarch64 version and need to be compiled by ourselves, and the assembly 

part of the software code also needs to be adjusted accordingly. Despite 

these challenges, we have successfully ported the EOS code to the aarch64. 

This article discusses the current status and plans for the software port as 

well as performance testing after porting. 

1 Introduction  

EOS [1] is the storage technology developed by CERN to support Large Hadron Collider 

(LHC) activity, and is also the major storage solution adopted by many experiments and 

projects at Institute of High Energy Physics (IHEP), CAS. It provides a service for storing 

large amounts of physics data and user files, with a focus on interactive and batch analysis. 

In our previous work at IHEP, EOS provided efficient and stable services, with peak 

throughput exceeding 50GB/s, managing more than 18 PB of scientific research data from 

2016 to 2020. We expect to have more than 26 PB of data in 2021. In order to cope with the 

substantial data increase, we need a more cost-effective solution to expand storage space. 

Therefore, we explored the porting of EOS from Intel x86_64 to ARM aarch64 and tested 

the related performance. 

We chose EOS_4.7.7 for porting, because it was the most stable version when we 

started porting. In section 2, we briefly introduce the ARM architecture and its role in HEP 

experiment. Section 3 introduces our porting work and the main difficulties we’ve 

encountered. The performance test results and discussions of our EOS are presented in 
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section 4. And finally, we summarize the EOS porting work and briefly introduce plans for 

future work. 
 

2 The ARM architecture and its role in HEP experiment  

The ARM is a widely use RISC architecture, and CPUS based on ARM are commonly used 

in smart phones, laptops, tablets, embedded systems, and so on. Compared with Intel's x86 

architecture, it is characterized by small size, low power consumption, and low cost. These 

features give ARM a certain advantage in the high-performance computing field that 

requires a lot of power costs. With the introduction of the new generation of ARMv8 

architecture, more and more manufacturers have begun to develop ARM-based server-level 

chips and applied them in scenarios such as distributed storage, big data analysis, and cloud 

computing. For example, Cavium ThunderX in the United States [2], Fujitsu A64FX in 

Japan [3], Huawei Kunpeng 920 in China, etc. At the same time, some researchers also 

discussed the performance differences between the ARMv8 and x86 series from different 

perspectives.  

Laurenzano et al. tested and evaluated the performance of X-Gene [4], which is a 64-bit 

ARMv8 processor. The results show that the performance of X-Gene is roughly on par with 

an Intel Atom and that the energy consumption is roughly on par with an Intel Sandy 

Bridge. Yichao Wang et al. used the thread binding method to compare the performance of 

the ARM processor under a single Socket with the mainstream commercial processor Intel 

Xeon [5]. The experimental results show that the software CloverLeaf and TeaLeaf based 

on the Stencil method have achieved basically the same operating performance on the ARM 

processor as the Intel XeonHaswell architecture processor. Combining the low power 

consumption characteristics of ARM processors, ARM server-level processing has the 

ability to challenge mainstream x86 processors in memory-access restricted applications. 

As a classic application scenario of high-performance computing, high-energy physics 

experiments pay great attention to the software ecology based on the ARM architecture. 

Many commonly used softwares have ported from x86 to aarch64, such as LHCb stack, 

LCG software stack and ATLAS software stack. These works are of great significance to 

the development of software in the field of high energy physics. Marek et al. ported the 

LCG software stack to aarch64, and then used the program 

"multicore/mtbb201_parallelHistoFill.C" in ROOT tutorials for testing [6]. The result 

shows that although single-core ARM machines do not achieve as good results as x86_64 

machines, in a multi-core benchmark, as the number of cores increases, the CPU time of 

X86 and ARM tends to be similar. And the advantage of ARM processor lies mainly in the 

good cost performance, rather than high performance. In [7] Laura Promberger et al. work 

on porting LHCb stack from x86 to aarch64 and ppc64le. At the same time, they analyzed 

and proved the importance of cross-platform support for vectorization. The above results 

inspired us to port EOS to the aarch64 architecture. 

3 Porting to aarch64 (ARM)  

Our main work is to port EOS and QuarkDB to the ARMv8 architecture. In the process of 

porting, we solved three problems. First, because EOS and QuarkDB have many 

dependency packages, some of them do not have ready-made aarch64 versions, such as 

grbc, eos-folly, protobuf, rocksdb, isa-l, isa-l_crypto, etc. We need to find the correct 

version of their source code, and then manually compile and generate the corresponding 

RPM package. Second, some libraries such as rocksdb and folly will have errors during 

static linking. These errors may be related to the ARM architecture itself. After changing to 



dynamic link libraries, no errors will be reported. Therefore, we compiled all libraries with 

similar problems into dynamic libraries and added them to EOS. Third, we need to port 

inline assembly code manually. There is a small amount of Intel assembly code related to 

crc32 function in EOS, and the assembly instructions need to be replaced with the 

corresponding ARM assembly instructions. In order to maintain programming consistency, 

we redefined the assembly instructions for the ARM architecture in the header file 

common/crc32c/crc32.h as following: 

 

#ifdef __aarch64__ 

#define __builtin_ia32_crc32di __builtin_aarch64_crc32cx 

#define __builtin_ia32_crc32si __builtin_aarch64_crc32cw 

#define __builtin_ia32_crc32hi __builtin_aarch64_crc32ch 

#define __builtin_ia32_crc32qi __builtin_aarch64_crc32cb 

#endif // GCC_AARCH64_H 

 

In addition, we have written an additional compilation switch based on the original 

software. Its function is to automatically identify the architecture type used by the local 

machine's chip after turning on the switch. In this way, we do not need to manually select 

the correct version when installing EOS on a new machine. 

After successfully porting EOS to aarch64, we built EOS and generated RPM 

installation packages. By installing and running EOS on another new server with aarch64 

architecture, we proved the success of our porting. In addition, we used two machines to 

build a distributed storage system for the evaluation of file read and write performance. 

4 Performance  

The speed of file reading and writing, in practical applications, are important indicators for 

storage software. Therefore, after installing the aarch64 version of EOS on new arm 

machines, we tested file reading and writing performance of the local hard disks mounted to 

EOS and the data transmission speed of the server in the distributed environment. Table 1 

contains detailed information about the machines used for benchmarking.  

Table 1. Machines used for the benchmark 

Items Parameter 

Central Processing Unit 
HiSilicon Kunpeng 920-6426 CPU @ 2600MHz 

64cores * 2EA 

Network Interface Card 25 Gbps 

Storage device SSD drives with SAS interface (SATA 3.2, 6.0 Gb/s) 

Operating System CentOS Linux release 7.6.1810 

Operating System Kernel 

Version 
4.14.0-115.10.1.el7a.aarch64 

EOS version 4.7.7.aarch64 

 

It is worth noting that our Network interface card support 25 Gbps, so the theoretical 

data transmission speed is 3.125 giga byte per second. We expect the actual data 

transmission speed is within 10% of the theoretical value. 

 



4.1 Performance of SSD  

 
Fig. 1. Average read or write speed of multiple SSDs 

 

We use the “dd”  command to test the disks mounted to EOS. Some examples are as 

following: 

 

Write test command: 

dd if=/dev/zero of=$dirn/localtest/f$i bs=1024M count=10 oflag=direct 

Read test command: 

dd of=/dev/zero if=$dirn/localtest/f$i bs=1024M count=10 iflag=direct 

 

In order to make the results more accurate, we set the arguments “oflag” and “iflag” to 

“direct”, which means that we turn off system cache during the tests. Then we test the 

average speed when reading or writing multiple SSDs at the same time. The test results are 

shown in Figure 1. The results show that the average read speed of a single SSD is 511 

MB/s, and the average write speed is 421 MB/s. 

It can be seen that with the increase of the number of SSDs, the average reading and 

writing speed of the system are also increasing, and the relationship between the two is 

almost linear. We can better evaluate the performance of data transmission of EOS by 

testing the performance of SSD. 

4.2 Performance of data transmission  

For a complete EOS system, metadata entries for files and directories are cached in the 

MGM namespace server. The data storage service FST provides a plug-in infrastructure for 

file layouts and storage protocols. The main layouts are replication and erasure encoding of 

files. The replica mode means how many copies of the file are stored in EOS. 

We tested the data transmission performance of EOS with different replica layout 

configurations. Firstly, we evaluated the performance of single replica mode with 2 FSTs, 

and the development is shown in Fig. 2. 



 

Fig. 2. The development of 2 FSTs in single replica mode 

 

We use the XRootD client “xrdcp” to test the writing performance, and the reading 

performance is tested by using a script “xrdread” written by ourselves, the main part of 

which is to read a file in the storage system through the XRootD protocol. We take the total 

number of network received and sent data per second provided by the “dstat” command as 

the performance indicator. To test the maximum data transfer speed, we run multiple 

writing or reading instances simultaneously on each client. Specifically, we set the file size 

involved in “xrdcp” to 16GB, and executed a total of 180 identical commands on all clients, 

so that the amount of data sent to the EOS server in real time has exceeded the limit of the 

network bandwidth. For the “xrdread”  script, we made the same configuration. Some 

examples are as following: 

 

Write test command: 

xrdcp /localdata/write/f$i   root://eos.mgm.test.com//eos/data/ 

Read test command: 

./xrdread root://eos.mgm.test.com///eos/data/f$i   /localdata/read/ 

 

Based on the above configuration, we test the data transfer speed. the results show that 

the maximum total receive data speed of EOS is 5.868 GB/s and the maximum send data 

speed is 5.620 GB/s. 

 
Fig. 3. Maximum transferring data speed 

 



The data transmission speed of each server is in line with our expectation, that is the 

difference between the theoretical value and the actual value is within 10%. The reason is 

that EOS will perform verification when sending or receiving data. In addition, sending 

data is lower than receiving data in that the sent data is read by the SSD, and the received 

data is written into the cache first. The performance difference between the cache and the 

SSD causes this phenomenon. 

Then, we tested the data transmission performance difference between 2 FSTs and 6 

FSTs in two-replica mode. The system developments are shown in Figure 4. 

    
Fig. 4. The development of 2 FSTs and 6 FSTs in two-replica mode 

 

When there are 2 FSTs in two-replica mode, one FST is deployed on each server. For the 

second case, we set up 3 FSTs on each server. The test results are shown in Figure 5 and 

Figure 6. 

 

Fig. 5. maximum read or write speed of 2 FSTs in two replica mode 

 



 

Fig. 6. maximum read or write speed of 6 FSTs in two replica mode 

 

We can conclude from the test results that when the network bandwidth does not reach 

the maximum limit, the sending data speed is always lower than the receiving data speed. 

And the reason is the same as that of single replica. It should be noted that when the 

network bandwidth is full, the speed of sending data of 2 FSTs is greater than the speed of 

receiving data. This is because when FST receives data, it needs to send the data to another 

FST to complete the backup at the same time which occupies part of the bandwidth. When 

there are 6 FSTs, the speed of sending data is lower than the speed of receiving data. This is 

because there are multiple FSTs on the same machine, and the backup may not need to go 

through the network. 

These tests show that the main functions of EOS can run normally on aarch64 for the 

first time, and the performance is in line with our expectations, that is, the actual data 

transmission speed is within 10% of the theoretical speed. 

5 Future work  

Our future goal is to have our arm branch of EOS been merged into EOS upstream in the 

CERN, and to organize and maintain the EOS dependent libraries based on the aarch64 

architecture, and provides unofficial support for these libraries on ARM platform., By this 

more people or organizations can benefit from EOS on ARM platform and provide us with 

valuable feedback, which may promote the progress and development of EOS in turn. 

Finally, we also plan to conduct a detailed analysis of the cost-effectiveness of different 

architectures, which will help us choose more appropriate hardware resources. 

6 Conclusion  

Our work has broadened the application scenarios of the EOS distributed storage system, so 

that it can work on ARM servers as well as x86 machines. This provides us with more 

options when purchasing hardwares. During the whole research process, firstly we tested 

and proved the availability of EOS based on aarch64machines. Then, through the test of 

single and double copy mode, the EOS performance on aarch64 machines has reached our 

expectation. We have confidence that following work based on this will benefit us in 

providing better services for various experiments. 
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