
Exploring Object Stores for High-Energy Physics Data Storage

Javier López-Gómez – CERN

<javier.lopez.gomez@cern.ch>

vCHEP2021, 2021-05-19

EP-SFT, CERN, Geneva, Switzerland

http://root.cern/

http://root.cern/


ContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContents

1 Introduction

2 The RNTuple DAOS backend

3 Evaluation

4 Conclusion

1/12



Introduction



Object Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: Motivation

Traditional storage stack designed for spinning disks (few IOPS). I/O

coalescing, buffering, etc. became less relevant.

POSIX I/O is a major problem for parallel filesystem scalability.

Modern object stores overcome these limitations.

GET and PUT primitives; objects accessed

via a unique object identifier (OID).

Intel DAOS provides a fault-tolerant

object store optimized for high

bandwidth, low latency, and high IOPS.

2/12



Object Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: Motivation

Traditional storage stack designed for spinning disks (few IOPS). I/O

coalescing, buffering, etc. became less relevant.

POSIX I/O is a major problem for parallel filesystem scalability.

Modern object stores overcome these limitations.

GET and PUT primitives; objects accessed

via a unique object identifier (OID).

Intel DAOS provides a fault-tolerant

object store optimized for high

bandwidth, low latency, and high IOPS.

2/12



ROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTuple

Most analyses in HEP require access to many

events, but only a subset of their properties.

TTree has been in use for 25 years (1+ EB

stored in ROOT files!).

However, not designed to fully exploit modern

hardware.

RNTuple is the R&D project to evolve the

TTree I/O.

Object stores are first-class.

x y z mass

...
...

...
...

0.423 1.123 3.744 23.1413

...
...

...
...

...
...

...
...

3/12



RNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture Overview

Storage layer / byte ranges

POSIX files, object stores, …

Primitives layer / simple types

“Columns” containing elements of fundamental types (float,

int, …) grouped into (compressed) pages and clusters

Logical layer / C++ objects

Mapping of C++ types onto columns, e.g.

std:::vector<float> 7→ index column and a value column

Event iteration

Looping over events for reading/writing

4/12



RNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File Format

… …

Anchor Header Page

Cluster

Footer

fId

fE

struct Event {
int fId;
vector<Particle> fPtcls;

};

struct Particle {
float fE;
vector<int> fIds;

};

Pages: Array of fundamental types (maybe compressed); order of

∼ tens of KiB, but tunable at write time.

Cluster: Collection of pages for a certain range of events, e.g. 1–1000.

Anchor/Header/Footer: Schema information + location of pages/clusters.

5/12



Intel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and ObjectsIntel DAOS: Pools, Containers and Objects

DAOS pool
DAOS container

key value

… …

key value

… …

DAOS object

Object: a Key–Value store with locality.

- The key is split into dkey (distribution key) and akey (attribute key).

dkey value affects data locality.

Object class: determines redundancy (replication/erasure code).

6/12



The RNTuple DAOS backend



OverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverviewOverview

… …

Anchor Header Page

Cluster

Footer

fId

fE

struct Event {
int fId;
vector<Particle> fPtcls;

};

struct Particle {
float fE;
vector<int> fIds;

};

7/12



Mapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to ObjectsMapping RNTuple Clusters and Pages to Objects

Two possible mappings for pages and clusters:

One OID per page. A sequential OID is assigned for each committed page;

constant dkey and akey.

One OID per cluster. OID = cluster index; dkey is used for addressing

individual pages in the cluster; constant akey

8/12



User (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOS

auto ntuple = RNTupleReader::Open("DecayTree",

"./B2HHH~zstd.ntuple");

auto x = ntuple->GetView<double>("x");

auto y = ntuple->GetView<double>("y");

auto z = ntuple->GetView<double>("z");

auto mass = ntuple->GetView<double>("mass");

for (auto i : ntuple->GetEntryRange()) {

//...

}

1UUIDs are not meaningful to users (common problem in object stores).

9/12



User (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOS

auto ntuple = RNTupleReader::Open("DecayTree",

"daos:///e6f8e503-e409-4b08-8eeb-7e4d77cce6bb:1/b4f6d9fc-

e081-41d4-91ae-41adf800b537");1

auto x = ntuple->GetView<double>("x");

auto y = ntuple->GetView<double>("y");

auto z = ntuple->GetView<double>("z");

auto mass = ntuple->GetView<double>("mass");

for (auto i : ntuple->GetEntryRange()) {

//...

}

1UUIDs are not meaningful to users (common problem in object stores).

9/12



Evaluation



Hardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software EnvironmentHardware and Software Environment

Experiments ran on the CERN Openlab DAOS testbed:

3 DAOS servers, 1 head node

interconnected by an Omni-Path Edge 100 Series 24-port switch.

10/12



Performance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page sizePerformance Analysis: fixed cluster size, increasing page size

10
,0
00

20
,0
00

40
,0
00

80
,0
00

16
0,
00
0

32
0,
00
0

0

1

2

Number of elements per page

T
h
ro
u
g
h
p
u
t
(G
B
/
s)

Local (XFS on Optane SSDs) dfuse (SX) dfuse (RP_XSF)

libdaos (SX) libdaos (RP_XSF)

DAOS performs better with large page sizes, where it outperforms local SSDs.

Outperforms dfuse in all cases.

Benchmark is single-threaded (limiting factor). 11/12



Conclusion



ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion

RNTuple architecture decouples storage from

serialization/representation. Object stores are first-class.

First prototype implementation of an Intel DAOS backend merged into

ROOT’s ‘master‘ branch.

Next Questions:

1. Investigate why reads are not saturating the data link.

2. Optimize moving large amounts of data from HEP storage to a DAOS

data center?

3. Third mapping: cluster 7→ OID, column 7→ dkey, akey to address

individual pages.

12/12



Exploring Object Stores for High-Energy Physics Data Storage

Javier López-Gómez – CERN

<javier.lopez.gomez@cern.ch>

vCHEP2021, 2021-05-19

EP-SFT, CERN, Geneva, Switzerland

http://root.cern/

http://root.cern/


BACKUP – Hardware and Software Environment

Figure 1: Server nodes HW

Figure 2: Client node HW



BACKUP – DAOS: Overview

Server 1 Server 2 Server 3

Pool 1

Pool 2 Pool 3

Ta
rg
e
t
1

Ta
rg
e
t
2

Ta
rg
e
t
3

Ta
rg
e
t
4

Ta
rg
e
t
1

Ta
rg
e
t
2

Ta
rg
e
t
3

Ta
rg
e
t
4

Ta
rg
e
t
1

Ta
rg
e
t
2

Ta
rg
e
t
3

Ta
rg
e
t
4

System: a set of DAOS servers connected to the same fabric.

Server: Linux daemon that exports locally-attached NVM storage. Listens on

a management interface and 1+ fabric endpoints.

Target: static partition of storage resources (controller, etc.). Avoids

contention, as each target has its private storage that can be directly

addressed over the fabric.



BACKUP – DAOS: compatibility layer

Existing software can use DAOS2,3 through:

POSIX filesystem (libdfs). Can be used either through libioil (I/O call

iterception) or dfuse (FUSE filesystem).

MPI–IO. Provides DAOS support through a ROMIO driver (MPICH and

Intel MPI).

HDF5, Apache Spark, …

2https://daos-stack.github.io/
3https://github.com/daos-stack/daos/

https://daos-stack.github.io/
https://github.com/daos-stack/daos/


BACKUP – Comparing OID-per-page to OID-per-cluster

20
,0
00

40
,0
00

80
,0
00

16
0,
00
0

32
0,
00
0

220

240

260

Cluster size

R
u
n
ti
m
e
(s
)

(a) gen_lhcb, no compression.

OID/page (SX) OID/page (RP_XSF)

OID/cluster (SX)

20
,0
00

40
,0
00

80
,0
00

16
0,
00
0

32
0,
00
0

20

40

60

Cluster size

R
u
n
ti
m
e
(s
)

(b) lhcb, no compression.

OID/page (SX) OID/page (RP_XSF)

OID/cluster (SX)


	Introduction
	The RNTuple DAOS backend
	Evaluation
	Conclusion
	Appendix

