
 

MetaCat - metadata catalog for data 
management systems 

Mandrichenko Igor,1 

1FNAL, Scientific Computing Division, Batavia, IL, USA 

Abstract. Metadata management is one of three major areas and parts of 
functionality of scientific data management along with replica management 
and workflow management. Metadata is the information describing the data 
stored in a data item, a file or an object. It includes the data item provenance, 
recording conditions, format and other attributes. MetaCat is a metadata 
management database designed and developed for High Energy Physics 
experiments. As a component of a data management system, it’s main 
objectives are to provide efficient metadata storage and management and 
fast data items selection functionality. MetaCat is supposed to work on the 
scale of 100 million files (or objects) and beyond. The article will discuss 
the functionality of MetaCat and technological solutions used to implement 
the product. 

 

1 Metadata catalog as part of a data management system  
A data management system built for HEP experiments is responsible for storing, moving 

and making available physical data collected by the collaboration. Typically, the data is 
organized as a collection of objects or files. If it is a file, then usually it contains a set of 
records of observed HEP events. In case when the data management system deals with 
objects, they can be either something like a reconstructed event or a collection of events. For 
the purpose of this paper, it is not important whether the data management system deals with 
files or objects. Therefore, we will be mostly using the term “file”, but it can be replaced with 
the term “object” without making any changes to the rest of the paper. 

 
Having said that, we can say that a data management system operates on a collection of 

“physical” copies of files (or objects), moving them between storage elements and making 
them available to the data processing and analysis. Typical HEP data management system 
can be broken into 3 major components or areas of functionality: 

● Replica Manager - the part of the system responsible for moving data between 
storage elements. Replica Management system usually operates in terms of replicas 

 
1 Corresponding author: ivm@fnal.gov 



- copies or “physical” representations of “logical” files. Single “logical” file can 
have multiple “physical” replicas in multiple storage elements. Replica Manager 
keeps track of all physical replicas of logical files and coordinates movement of the 
replicas. 

● Workflow Manager - the component, which coordinates data consumption by data 
processing or analysis, making sure that all selected logical files get processed or 
analyzed as their replicas become available to the processing or analysis processes. 

● Metadata Catalog, which stores metadata about logical files and makes it possible 
to select “interesting” logical files based on criteria expressed in terms of file 
metadata. 

 
Figure 1. Data management structure 

2 MetaCat 

2.1 Project objective, scope and requirements 
 

MetaCat is a project with the objective to build a metadata catalogue, which can be used 
in a HEP data management system. Although the main target user of the project happens to 
be ProtoDUNE/DUNE, MetaCat is supposed to be generic enough to be able to be used by 
multiple experiments without any changes. It means that MetaCat has to satisfy the following 
general requirements: 

● Metadata representation must be powerful, flexible and abstract enough to 
accommodate wide range of metadata data types and possibly complex metadata 
structures 

● It needs to scale to 100 million files and beyond 
● The unit of operation of the catalogue has to be an abstract “file” or “object” with 

minimal but sufficient set of predefined attributes with the ability to add user-
defined attributes in a flexible and convenient way 

● File selection mechanism must be powerful and at the same time simple enough to 
be able to express sufficiently wide range of metadata selection criteria  

● MetaCat must be compatible with Rucio [1], which is a popular replica management 
system used by many HEP experiments, including DUNE/ProtoDUNE. On the 



other hand, it should be generic enough to work with other replica management 
systems. 

 
Project scope was generally defined as building a metadata database with convenient user 

and application programming interfaces so that it can be used by humans as well as other 
components of the data management system. MetaCat does not have any knowledge of 
physical file replicas. 

 
Based on our experience with SAM [2,3], an important part of the requirements is to 

provide a mechanism to use data from external metadata sources, such as conditions or runs 
databases, as part of metadata queries without copying the external data into or making it 
appear as part of the metadata database. 

 
2.2 Data model 
 

MetaCat objects are identified by names within namespaces. Name of an object is unique 
within its namespace. A namespace/name pair uniquely identifies an object in MetaCat. In 
addition to namespace/name, files are assigned unique text identifiers. These identifiers are 
primarily for internal use within the MetaCat database, but are available to the user. At the 
time of the file declaration, the user can specify a file id, which must be unique, otherwise 
MetaCat will generate a unique file id. After a file is declared to MetaCat, it can be renamed. 
Both namespace and name can be changed, providing the new namespace/name pair is 
unique. However, file id can not be changed. 

 

 
Figure 2. MetaCat data model 

  
MetaCat stores metadata associated with files and datasets. 
 
A dataset is a collection of files. A dataset can have child datasets. The system makes sure 

there are no circles in the parent/child relationship between datasets. A dataset can be set to 



be monotonic, which means files can not be removed from it or to be frozen - files can not 
be added or removed from the dataset. 

 
Files are added to and removed from a dataset explicitly. A file can belong to zero or 

more datasets. There is no requirement that file namespace has to be related in any way to 
the namespace(s) of the dataset(s) the file belongs to. If a file belongs to a child dataset, it 
does not mean it belongs to its parent dataset. However, the query language discussed below 
allows to include files from child datasets into query results, recursively. 

 
There is a many-to-many provenance relationship between files. A file can have zero or 

more derived (child) files and zero or more parent files. The system makes sure the 
provenance relationship is not circular. 

 
Metadata attributes have names and values. Any file or dataset can have zero or more 

metadata attributes. Attribute names are alphanumeric words optionally combined with dots. 
Any JSON structure can be an attribute value. Therefore, a file or a dataset attribute set is a 
JSON dictionary. 
 
2.3 Ownership and permissions 
 

A MetaCat user in the system is identified by a unique username. A user can be a member 
of zero or more roles (groups). Namespaces and attribute categories have owners. Namespace 
or category owner can be either an individual user or a role. If the namespace or the category 
is owned by the role, it means it is automatically owned by all role members. 

 
The namespace owner (either directly or via the role membership) automatically owns all 

the datasets and files in this namespace. Ownership does not automatically propagate along 
the dataset parent/child or file provenance relationships. 

 
Only the dataset and file owner can add or remove files from the dataset. Only the owner 

of the file or the dataset can change their metadata attributes 
 
 

2.4 Queries 
 

One of the most important parts of the MetaCat functionality is the ability to query the 
database for “interesting” files. Essentially, the query is a logical expression in terms of file 
and/or dataset metadata attributes, file provenance relationship and dataset parent/child 
relationship. There are two types of queries in MetaCat - file queries and dataset queries. File 
queries return a set of files (a list of file ids) whereas dataset queries return list of datasets. 
The file and dataset lists are not guaranteed to have consistent order, so they are in fact sets 
rather than lists. 

 
A query is merely a formula specifying the selection criteria. MetaCat never saves the 

results of the query, so re-running a query can produce different results as the files are 
added/removed from the system, to/from the datasets or their metadata attributes change. 
However, there is an option to save results of the file query as a new dataset or add selected 
files to an existing dataset. 

 
A query can be saved into the database under a name within a namespace. This function 

can be used to publish complicated queries and make them reusable by other users. 



 
  



2.5 MetaCat query language (MQL) 
 

A MetaCat user writes the query in the query language called MQL. MQL allows the user 
to specify file/dataset metadata attribute criteria, use dataset parent/child relationship and file 
provenance relationship to select a set of file or a datasets. Further, simple queries can be 
combined into more complicated ones using logical operations like union, intersection (join) 
and exclusion. Named queries can be referred to from within the MQL expression by their 
name. 

 
Most basic MQL query looks like this: 
 

files from prod:dataset_A 
 
This query returns all the files in the dataset “dataset_A” in namespace “prod”. “files” 

and “from” are reserved words in MQL 
 
More complicated query could look like this: 
 

files from prod:dataset_A 
 where daq.run_number < 1000  
and format.type = ‘root’ 

 
This query returns all files from prod:dataset_A, matching some criteria. 

“daq.run_number” and “format.type” are attribute names and these attributes are used to 
select certain files from the dataset. 

 
Queries can be combined into other queries using set operations: 
 

union( 
files from prod:dataset_A 

  where daq.run_number < 1000, 
files from prod:dataset_B 

  where daq.run_number > 1200 
) where format.type = ‘root’ 

 
This query combines two simple queries and then applies additional metadata criteria to 

the results. 
 
A query can combine metadata criteria for files and datasets: 
 

files from users:’data_2020_%’  
having type=’mc’  
where format.type=‘hdf5’ 

 
Here, the “having” keyword indicates the dataset metadata criteria and “where” condition 

applies to files. ‘%’ is the wildcard character for dataset names. 
 
 

 
  



2.6 External data sources 
 

MetaCat has the functionality to access external metadata sources like conditions 
databases and use the metadata stored there to filter file selection results. In order to make an 
external metadata source available to MetaCat instance, the collaboration develops a Python 
module with a standard interface, which knows how to access the data source and plug the 
module into MetaCat instance under some name. Once the module is plugged into the 
instance, it can be referred to in the MQL query as a named filter by and used to filter results 
of an intermediate query or queries within the MQL expression or even “inject” metadata 
from the external source into the query and make it available for the selection criteria. 

 
In MQL, access to external data is done with “filter”: 
 
 

filter run_quality_limit(50) 
( 
 files from users:’data_2020_%’  

having type=’data’  
) 

 
This query could be used to select files from multiple datasets with run quality greater 

than 50, while the data quality is in fact stored in some external runs database. The filter 
would receive the results from the input query with all the metadata and then get the runs 
data from the external source and filter out files  

 
 

  



2.6 Architecture and Implementation 
 

MetaCat is a typical web services database application. The underlying database is not 
exposed to the users. It can be accessed via Python API, but the primary method of interacting 
with the system is through the web service or web GUI.  The REST-based web service adds 
the scalability and cacheability to the system and completely unties the server side from the 
client implementation. Any standard HTTP/HTTPS client can interact with the system either 
directly or through a standard HTTP proxy or cache.  

 

 
Figure 3 MetaCat architecture 

The system publishes the following interfaces: 
● Direct database access Python API 
● Web services REST interface 
● Python client side API, which communicates with the server via HTTP 
● Command line interface with basic set of commands to enter (modify) data into the 

database and to query the database 
 
MetaCat is implemented in Python3 with PostgreSQL database. It uses PostgreSQL 

support of JSON data type to store file and dataset metadata and to perform efficient metadata 
queries. 

 
  



3 Project status 
 

MetaCat project has been in development stage since about a year ago. Main target for 
the project happens to be DUNE/ProtoDUNE, but MetaCat is a general–purpose tool, 
designed to work in any data management system without any DUNE specifics in its design 
of implementation. 

Currently MetaCat is in relatively stable beta-testing stage, continuing its development 
based on the feedback received from users who are testing the product. 
 

References 
1. Rucio - https://rucio.cern.ch/ 
2. R. A. Illingworth 2014 J. Phys.: Conf. Ser. 513 032045 
3. S. Fuess et al 2017 J. Phys.: Conf. Ser. 898 062036 
 

 


