Enabling interoperable data and application services in a federated ScienceMesh

Ishank Arora, Samuel Alfageme Sainz, Pedro Ferreira, Hugo Gonzalez Labrador, Jakub Moscicki

CERN

1 Introduction

The need for a federated mesh

Research

- Research is a collaborative activity in HEP
 - Involves contributions from across institutions working towards a shared goal
 - Data is a key element to uncover scientific discoveries
 - And access and sharing of this data is crucial for collaboration

Sync and Share

- On-prem data repositories have been extended with sync and share capabilities
- EFSS solutions include ownCloud, nextCloud, Seafile
- Bringing universal access to data: anytime, anywhere, any device

Service Fragmentation and Restricted Collaboration

- Enable collaboration possibilities across clouds in a federated mesh (ScienceMesh)[1]
- Real-time collaborative editing (CodiMD, Collabora, OnlyOffice)
- Data science environments (SWAN, JupyterLab)
- On-demand data transfers (Rucio, FTS, RClone)
- Digital Repositories (Zenodo)

2 CS3MESH4EOSC

How to expand local use-cases to remote users

Questions to be addressed

User Discovery

Discover remote users in a user-privacy compliant way

Invitation API
Mesh Provider API

User Experience

Ensure seamless integration with your favourite EFSS

Integration with vendors

Expand local use cases

Data science envs, Collaborative editing, BYOA

OCM API App Provider API

Establish trust

Ensure that the individual clouds can trust each other

Access Control functionalities

User discovery

- Possible approaches:
 - A central registry which enables searching for users and groups
 - Scalability issues
 - User privacy not guaranteed
 - A distributed workflow to invite users to collaborate via any third-party communication channel [1]

[1] https://cs3org.github.io/OCM-API/docs.html

Open Cloud Mesh: Enable local use-cases across clouds

- A web-based protocol for universal file access beyond individual clouds
- Vendor-neutral
- Provides endpoints to receive and list shares from other mesh providers
- The endpoints for individual mesh providers can be retrieved either from a local database or a central registry to which all providers must register.

3

Reference Implementation

The Interoperability Platform

The Interoperability Platform

The ScienceMesh architecture

Establishing trust: Access Control

- Rate limiting the number of requests to the metadata endpoints
- Shared API keys between the different providers
- Reverse lookups of the incoming request's host
 - Requires knowledge of the domains of all the registered providers

Preliminary Tests and Conclusion

- These use cases available across the 8 partners -CERNBox, SURFdrive, PSNCBox, CloudSTOR, Sciebo, owncloud@CESNET, SWITCHdrive and ScienceData.
- Initial automated as well as manual rounds of tests across these sites covered many scenarios.
- Efforts into developing bindings for more research-oriented applications will continue

Thanks!

Questions?

ishank.arora@cern.ch

CS3MESH4EOSC has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 863353.