
Distributed statistical inference

with pyhf enabled through funcX

Matthew Feickert

(University of Illinois at Urbana-Champaign)

matthew.feickert@cern.ch

vCHEP 2021

May 20th, 2021

1

mailto:matthew.feickert@cern.ch
https://indico.cern.ch/event/948465/

Lukas Heinrich

CERN

Matthew Feickert

Illinois

Giordon Stark

UCSC SCIPP

Ben Galewsky

NCSA/Illinois

Authors

1

https://github.com/lukasheinrich
https://www.matthewfeickert.com/
https://github.com/kratsg
https://bengalewsky.github.io/about/

HPC facilities provide an opportunity to ef�ciently
perform the statistical inference of LHC data

Can pose problems with orchestration and
ef�cient scheduling

Want to leverage pyhf hardware accelerated
backends at HPC sites for real analysis speedup

Reduce �tting time from hours to minutes

Deploy a (�tting) Function as a Service (FaaS)
powered through funcX

Example use cases:

Large scale ensemble �ts for statistical combinations

Large dimensional scans of theory parameter space (e.g.
pMSSM scans)

Pseudo-experiment generation ("toys")

ATLAS workspace that takes over an hour on ROOT �t
in under 1 minute with pyhf on local GPU

Fitting as a Service with pyhf on HPCs

2

https://funcx.readthedocs.io/en/latest/

Pure Python implementation of the
HistFactory statistical speci�cation for multi-

bin histogram-based analysis

Supports multiple computational backends and
optimizers (defaults of NumPy and SciPy)

JAX, TensorFlow, and PyTorch backends can
leverage hardware acceleration (GPUs, TPUs) and
automatic differentiation

Possible to outperform C++ implementations of
HistFactory

High-performance FaaS platform

Designed to orchestrate scienti�c workloads
across heterogeneous computing resources
(clusters, clouds, and supercomputers) and task
execution providers (HTCondor, Slurm, Torque,
and Kubernetes)

Leverages Parsl for ef�cient parallelism and
managing concurrent task execution

Allows users to register and then execute Python
functions in "serverless supercomputing"
work�ow

Fitting as a Service Methods and Technologies

3

https://pyhf.readthedocs.io/
https://funcx.readthedocs.io/en/latest/
https://parsl.readthedocs.io/

funcX endpoint: logical entity that
represents a compute resource

Managed by an agent process allowing
the funcX service to dispatch user
de�ned functions to resources for
execution

Agent handles:

Authentication (Globus) and authorization

Provisioning of nodes on the compute
resource

Monitoring and management

from funcx_endpoint.endpoint.utils.config import Config

...

user_opts = {

 "expanse": {

 "worker_init": ". ~/setup_expanse_funcx_test_env.sh",

 "scheduler_options": "#SBATCH --gpus=1",

 }

}

config = Config(

 executors=[

 HighThroughputExecutor(

 label="Expanse_GPU",

 address=address_by_hostname(),

 provider=SlurmProvider(

 "gpu", # Partition / QOS

 account="nsa106",

 nodes_per_block=1,

 max_blocks=4,

 init_blocks=1,

 mem_per_node=96,

 scheduler_options=user_opts["expanse"]["scheduler_options"],

 worker_init=user_opts["expanse"]["worker_init"],

 launcher=SrunLauncher(),

 walltime="00:10:00",

 cmd_timeout=120,

),

),

],

)

funcX Endpoints on HPC

4

https://funcx.readthedocs.io/en/stable/endpoints.html

Example Parsl HighThroughputExecutor con�g

(from Parsl docs) that funcX extends

from parsl.config import Config

from libsubmit.providers.local.local import Local

from parsl.executors import HighThroughputExecutor

config = Config(

 executors=[

 HighThroughputExecutor(

 label='local_htex',

 workers_per_node=2,

 provider=Local(

 min_blocks=1,

 init_blocks=1,

 max_blocks=2,

 nodes_per_block=1,

 parallelism=0.5

)

)

]

)

block: Basic unit of resources acquired from a provider

max_blocks: Maximum number of blocks that can be active per executor

nodes_per_block: Number of nodes requested per block

parallelism: Ratio of task execution capacity to the sum of running tasks and available

tasks

9 tasks to compute

Tasks are allocated to the �rst block until its
task_capacity (here 4 tasks) reached

Task 5: First block full and
5/9 > parallelism

so Parsl provisions a new block for executing the
remaining tasks

funcX Endpoints on HPC: Con�g Example

5

https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#configuration
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#blocks
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#elasticity
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#blocks
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#parallelism
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#configuration

import json

from time import sleep

import pyhf

from funcx.sdk.client import FuncXClient

from pyhf.contrib.utils import download

def prepare_workspace(data, backend):

 import pyhf

 pyhf.set_backend(backend)

 return pyhf.Workspace(data)

def infer_hypotest(workspace, metadata, patches, backend):

 import time

 import pyhf

 pyhf.set_backend(backend)

 tick = time.time()

 model = workspace.model(...)

 data = workspace.data(model)

 test_poi = 1.0

 return {

 "metadata": metadata,

 "CLs_obs": float(

 pyhf.infer.hypotest(test_poi, data, model, test_stat="qtilde")

),

 "Fit-Time": time.time() - tick,

 }

...

As the analyst user, de�ne the
functions that you want the
funcX endpoint to execute

These are run as individual jobs
and so require all dependencies
of the function to be de�ned
inside the function

import numpy # Not in execution scope

def example_function():

 import pyhf # Import here

 ...

 pyhf.set_backend("jax") # To use here

Execution with funcX: De�ne user functions

6

...

def main(args):

 ...

 # Initialize funcX client

 fxc = FuncXClient()

 fxc.max_requests = 200

 with open("endpoint_id.txt") as endpoint_file:

 pyhf_endpoint = str(endpoint_file.read().rstrip())

 # register functions

 prepare_func = fxc.register_function(prepare_workspace)

 # execute background only workspace

 bkgonly_workspace = json.load(bkgonly_json)

 prepare_task = fxc.run(

 bkgonly_workspace, backend, endpoint_id=pyhf_endpoint, function_id=prepare_func

)

 workspace = None

 while not workspace:

 try:

 workspace = fxc.get_result(prepare_task)

 except Exception as excep:

 print(f"prepare: {excep}")

 sleep(10)

...

With the user functions
de�ned, they can then be
registered with the funcX client
locally

fx.register_function(...)

The local funcX client can then
execute the request to the
remote funcX endpoint,
handling all communication
and authentication required

fx.run(...)

While the job run on the
remote HPC system, can make
periodic requests for �nished
results

fxc.get_result(...)

Returning the output of the user
de�ned functions

Execution with funcX: Register and run functions

7

...

 # register functions

 infer_func = fxc.register_function(infer_hypotest)

 patchset = pyhf.PatchSet(json.load(patchset_json))

 # execute patch fits across workers and retrieve them when done

 n_patches = len(patchset.patches)

 tasks = {}

 for patch_idx in range(n_patches):

 patch = patchset.patches[patch_idx]

 task_id = fxc.run(

 workspace,

 patch.metadata,

 [patch.patch],

 backend,

 endpoint_id=pyhf_endpoint,

 function_id=infer_func,

)

 tasks[patch.name] = {"id": task_id, "result": None}

 while count_complete(tasks.values()) < n_patches:

 for task in tasks.keys():

 if not tasks[task]["result"]:

 try:

 result = fxc.get_result(tasks[task]["id"])

 tasks[task]["result"] = result

 except Exception as excep:

 print(f"inference: {excep}")

 sleep(15)

...

The work�ow

fx.register_function(...)

fx.run(...)

can now be used to scale out as
many custom functions as the
workers can handle

This allows for all the signal
patches (model hypotheses) in
a full analysis to be run
simultaneously across HPC
workers

Run from anywhere (e.g. laptop)!

The user analyst has written
only simple pure Python

No system speci�c con�guration
�les needed

Execution with funcX: Scaling out jobs

8

Example: Fitting all 125 models from pyhf pallet

for published ATLAS SUSY 1Lbb analysis

DOI: https://doi.org/10.17182/hepdata.90607

Wall time under 2 minutes 30 seconds

Downloading of pyhf pallet from HEPData (local machine)

Registering functions (local machine)

Sending serialization to funcX endpoint (remote HPC)

funcX executing all jobs (remote HPC)

funcX retrieving �nished job output (local machine)

Deployments of funcX endpoints currently used
for testing

University of Chicago River HPC cluster (CPU)

NCSA Bluewaters (CPU)

XSEDE Expanse (GPU JAX)

feickert@ThinkPad-X1:~$ time python fit_analysis.py -c config/1Lbb.json

prepare: waiting-for-ep

prepare: waiting-for-ep

<pyhf.workspace.Workspace object at 0x7fb4cfe614f0>

Task C1N2_Wh_hbb_1000_0 complete, there are 1 results now

Task C1N2_Wh_hbb_1000_100 complete, there are 2 results now

Task C1N2_Wh_hbb_1000_150 complete, there are 3 results now

Task C1N2_Wh_hbb_1000_200 complete, there are 4 results now

Task C1N2_Wh_hbb_1000_250 complete, there are 5 results now

Task C1N2_Wh_hbb_1000_300 complete, there are 6 results now

Task C1N2_Wh_hbb_1000_350 complete, there are 7 results now

Task C1N2_Wh_hbb_1000_400 complete, there are 8 results now

Task C1N2_Wh_hbb_1000_50 complete, there are 9 results now

Task C1N2_Wh_hbb_150_0 complete, there are 10 results now

...

Task C1N2_Wh_hbb_900_150 complete, there are 119 results now

Task C1N2_Wh_hbb_900_200 complete, there are 120 results now

inference: waiting-for-ep

Task C1N2_Wh_hbb_900_300 complete, there are 121 results now

Task C1N2_Wh_hbb_900_350 complete, there are 122 results now

Task C1N2_Wh_hbb_900_400 complete, there are 123 results now

Task C1N2_Wh_hbb_900_50 complete, there are 124 results now

Task C1N2_Wh_hbb_900_250 complete, there are 125 results now

...

real 2m17.509s

user 0m6.465s

sys 0m1.561s

Scaling of Statistical Inference

9

https://www.hepdata.net/record/ins1755298
https://doi.org/10.17182/hepdata.90607

Remember, the returned output is just the
function's return

Our hypothesis test user function from earlier:

def infer_hypotest(workspace, metadata, patches, backend):

 import time

 import pyhf

 pyhf.set_backend(backend)

 tick = time.time()

 model = workspace.model(...)

 data = workspace.data(model)

 test_poi = 1.0

 return {

 "metadata": metadata,

 "CLs_obs": float(

 pyhf.infer.hypotest(

 test_poi, data, model, test_stat="qtilde"

)

),

 "Fit-Time": time.time() - tick,

 }

Allowing for easy and rapid serialization and
manipulation of results

Time from submitting jobs to plot can be minutes

feickert@ThinkPad-X1:~$ python fit_analysis.py -c config/1Lbb.json > run.log

Some light file manipulation later to extract results.json from run.log

feickert@ThinkPad-X1:~$ jq .C1N2_Wh_hbb_1000_0 results.json

{

 "metadata": {

 "name": "C1N2_Wh_hbb_1000_0",

 "values": [

 1000,

 0

]

 },

 "CLs_obs": 0.5856783708143126,

 "Fit-Time": 28.786057233810425

}

feickert@ThinkPad-X1:~$ jq .C1N2_Wh_hbb_1000_0.CLs_obs results.json

0.5856783708143126

Scaling of Statistical Inference: Results

10

Fit times for analyses using pyhf's NumPy

backend and SciPy optimizer orchestrated with
funcX on River HPC cluster (CPU) over 10 trials
compared to a single RIVER node

Reported wall �t time is the mean wall �t time of
the trials

Uncertainty on the mean wall time corresponds to the
standard deviation of the wall �t times

Given the variability in resources available on real
clusters, funcX con�g options governing resources
requested (nodes per block and max blocks) offer
most useful worker comparison metrics

Performance

Analysis Patches Nodes per block Max blocks Wall time (sec) Single node (sec)

Eur. Phys. J. C 80 (2020) 691 125 1 4 3842

JHEP 06 (2020) 46 76 1 4 114

Phys. Rev. D 101 (2020) 032009 57 1 4 612

156.2 ± 9.5

31.2 ± 2.7

57.4 ± 5.2
11

The nature of FaaS that makes it highly
scalable also leads to a problem for
taking advantage of just-in-time (JIT)
compiled functions

To leverage JITed functions there
needs to be memory that is preserved
across invocations of that function

Nature of FaaS: Each function call is
self contained and doesn't know about
global state

funcX endpoint listens on a queue and invokes
functions

In [1]: import jax.numpy as jnp

 ...: from jax import jit, random

In [2]: def selu(x, alpha=1.67, lmbda=1.05):

 ...: return lmbda jnp.where(x > 0, x, alpha jnp.exp(x) - alpha)

 ...:

In [3]: key = random.PRNGKey(0)

 ...: x = random.normal(key, (1000000,))

In [4]: %timeit selu(x)

850 µs ± 35.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [5]: selu_jit = jit(selu)

In [6]: %timeit selu_jit(x)

17.2 µs ± 105 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

50X speedup from JIT

Thoughts for future: Is it possible to create setup and tear down functionality to improve parallelized �tting?

Setup: Send function(s) to JIT and keep them in state

Tear down: Once jobs are �nished clean up state

Constraints and Trade-offs

12

Summary
Through the combined use of the pure-Python libraries funcX and pyhf, demonstrated the ability to

parallelize and accelerate statistical inference of physics analyses on HPC systems through a (�tting) FaaS
solution

Without having to write any bespoke batch jobs, inference can be registered and executed by analysts with a
client Python API that still achieves the large performance gains compared to single node execution that is a
typical motivation of use of batch systems.

Allows for transparently switching work�ows from CPU to GPU environments

Further performance testing ongoing

Not currently able to leverage bene�ts of JITed operations, but investigating further

Motivates investigation of the scaling performance for large scale ensemble �ts in the case of statistical
combinations of analyses and large dimensional scans of theory parameter space (e.g. phenomenological
minimal supersymmetric standard model (pMSSM) scans)

All code used public and open source!

pyhf (GitHub)

funcX (GitHub)

Parsl (GitHub)

Code for studies shown (GitHub)
13

https://github.com/scikit-hep/pyhf
https://github.com/funcx-faas/funcX
https://github.com/Parsl/parsl
https://github.com/matthewfeickert/distributed-inference-with-pyhf-and-funcX

Backup

14

Speci�cs of ROOT comparisons

"Thing X outperforms ROOT" isn't speci�c enough to be very helpful

All claims about performance against ROOT:

Made on ROOT v6.22.02 or earlier

Made given HistFactory models (not against WSMaker or something similar)

Still need to be tested against the recent ROOT v6.24.00 release

For a �tting service like what is being done with funcX fair comparisons are extremely dif�cult to create, and so
aren't reported directly here

15

Why use funcX as opposed to Dask?
funcX provides a managed service secured by Globus Auth

Endpoints can be set up by a site administrator and shared with authorized users through Globus Auth
Groups

Testing has shown that Dask struggles to scale up to thousands of nodes, whereas the funcX High Throughput
Executor (HTEX) provided through Parsl scales ef�ciently

16

https://parsl.readthedocs.io/en/stable/userguide/performance.html
https://parsl.readthedocs.io/
https://parsl.readthedocs.io/en/stable/userguide/performance.html

View of �tting FaaS Analysis Facility Blueprint

17

References
1. Lukas Heinrich, Distributed Gradients for Differentiable Analysis, Future Analysis Systems and Facilities

Workshop, 2020.

2. Babuji, Y., Woodard, A., Li, Z., Katz, D. S., Clifford, B., Kumar, R., Lacinski, L., Chard, R., Wozniak, J., Foster, I.,
Wilde, M., and Chard, K., Parsl: Pervasive Parallel Programming in Python. 28th ACM International Symposium
on High-Performance Parallel and Distributed Computing (HPDC). 2019.
https://doi.org/10.1145/3307681.3325400

18

https://indico.cern.ch/event/960587/contributions/4070325/
https://indico.cern.ch/event/960587/
https://doi.org/10.1145/3307681.3325400

The end.

18

