Distributed statistical inference

with pyhf enabled through funcX

Matthew Feickert
(University of Illinois at Urbana-Champaign)

matthew.feickert@cern.ch
vCHEP 2021

May 20th, 2021

T ILLINOIS ®'s

mailto:matthew.feickert@cern.ch
https://indico.cern.ch/event/948465/

Authors

Lukas Heinrich Matthew Feickert Giordon Stark Ben Galewsky

CERN lllinois UCSC SCIPP NCSA/lllinois

https://github.com/lukasheinrich
https://www.matthewfeickert.com/
https://github.com/kratsg
https://bengalewsky.github.io/about/

Fitting as a Service with pyhf on HPCs

e HPC facilities provide an opportunity to efficiently
perform the statistical inference of LHC data

e Can pose problems with orchestration and
efficient scheduling

e Want to leverage pyhf hardware accelerated
backends at HPC sites for real analysis speedup
o Reduce fitting time from hours to minutes
e Deploy a (fitting) Function as a Service (FaaS)
powered through funcX

e Example use cases:

o Large scale ensemble fits for statistical combinations

o Large dimensional scans of theory parameter space (e.g.
pMSSM scans)

o Pseudo-experiment generation ("toys")

$ nvidia-smi --list-gpus | awk 'NF{NF-=2};1'
GPU 0: GeForce RTX 2080 Ti

$ cat benchmarks/gpu/gpu_jax.txt

time pyhf cls --backend jax HVTWZ_3500.json

{

"CLs_exp": [
0.07675154647551732,
0.17259685242090003,
0.3571957128757839,
0.6318389054097654,
0.8797833319522873

1,
"CLs_obs": 0.25668814241306653

}

real Om53.790s
user Om59.982s
Sys Om4.725s

ATLAS workspace that takes over an hour on ROOT fit
in under 1 minute with pyhfon local GPU

https://funcx.readthedocs.io/en/latest/

Fitting as a Service Methods and Technologies

Pikelihoods

e Pure Python implementation of the
HistFactory statistical specification for multi-

bin histogram-based analysis

e Supports multiple computational backends and
optimizers (defaults of NumPy and SciPy)

e JAX, TensorFlow, and PyTorch backends can
leverage hardware acceleration (GPUs, TPUs) and
automatic differentiation

e Possible to outperform C++ implementations of
HistFactory

func?

High-performance FaaS platform

Designed to orchestrate scientific workloads
across heterogeneous computing resources
(clusters, clouds, and supercomputers) and task
execution providers (HTCondor, Slurm, Torque,
and Kubernetes)

Leverages Parsl for efficient parallelism and
managing concurrent task execution

Allows users to register and then execute Python
functions in "serverless supercomputing" 3

\Alnrllﬂn\ﬁl

https://pyhf.readthedocs.io/
https://funcx.readthedocs.io/en/latest/
https://parsl.readthedocs.io/

funcX Endpoints on HPC

from funcx_endpoint.endpoint.utils.config import Config

. . . user_opts = {
e funcX endpoint: logical entity that e |
represents a Compute resource "worker_init": ". ~/setup_expanse_funcx_test_env.sh",
"scheduler_options": "#SBATCH --gpus=1",

e Managed by an agent process allowing
the funcX service to dispatch user

config = Config(

defined functions to resources for executors=|
. HighThroughputExecutor (
execution label="Expanse_GPU",
address=address_by_hostname (),
S Agent handles. provider=SlurmProvider (
’ "gpu", # Partition / QOS
o Authentication (Globus) and authorization account="nsal06",
nodes_per_block=1,
o Provisioning of nodes on the compute max_blocks=4,
resource init_blocks=1,
mem_per_node=96,
o Monitoringand management scheduler_options=user_opts|["expanse"] ["scheduler_options"],

worker_init=user_opts["expanse"] ["worker_init"],
launcher=SrunLauncher (),

walltime="00:10:00",

cmd_timeout=120,

https://funcx.readthedocs.io/en/stable/endpoints.html

funcX Endpoints on HPC: Config Example

Example Parsl HighThroughputExecutor config

#*Parsl
(from Parsl docs) that funcX extends

Tasks Initializing sites

from parsl.config import Config
from libsubmit.providers.local.local import Local
from parsl.executors import HighThroughputExecutor

config = Config(
executors=|[

e

HighThroughputExecutor (
label="local_htex"',
workers_per_node=2,
provider=Local (

min_blocks=1,
init_blocks=1,
max_blocks=2, o 9taskstocompute
nodes_per_block=1,
parallelism=0.5

e Tasks are allocated to the first block until its
) task_capacity (here 4 tasks)reached

) e Task 5: First block full and

e block: Basic unitof resources acquired from a provider 5 / 9 > para l1lelism

e max_blocks:Maximum number of blocks that can be active per executor

so Parsl provisions a new block for executing the
remaining tasks

e nodes_per_block:Number of nodesrequested per block

e parallelism:Ratioof task execution capacity to the sum of running tasks and available
tasks

https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#configuration
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#blocks
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#elasticity
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#blocks
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#parallelism
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#configuration

Execution with funcX: Define user functions

import json

from time import sleep

import pyhf
from funcx.sdk.client import FuncXClient
from pyhf.contrib.utils import download

def prepare_workspace (data, backend) :
import pyhf
pyhf.set_backend (backend)

return pyhf.Workspace (data)

def infer_hypotest (workspace, metadata, patches, backend) :
import time
import pyhf

pvhf.set_backend (backend)

tick = time.time ()
model = workspace.model(...)
data = workspace.data (model)

test_poi = 1.0
return {
"metadata": metadata,
"CLs_obs": float(
pyhf.infer.hypotest (test_poi, data, model, test_stat="gtilde")
)

"Fit-Time": time.time() - tick,

e Asthe analyst user, define the
functions that you want the
funcX endpoint to execute

e These arerun as individual jobs
and so require all dependencies
of the function to be defined
inside the function

import numpy # Not in execution scope

def example_function () :
import pyhf # Import here

pvhf.set_backend("jax") # To use here

Execution with funcX: Register and run functions

def main (args) :

Initialize funcX client
fxc = FuncXClient ()
fxc.max_requests = 200

with open ("endpoint_id.txt") as endpoint_file:
pyhf_endpoint = str (endpoint_file.read().rstrip())

register functions

prepare_func = fxc.register_function (prepare_workspace)

execute background only workspace
bkgonly_workspace = json.load(bkgonly_json)
prepare_task = fxc.run(
bkgonly_workspace, backend, endpoint_id=pyhf_endpoint, function_id=prepare_func

)

workspace = None
while not workspace:
try:
workspace = fxc.get_result (prepare_task)
except Exception as excep:
print (f"prepare: {excep}")
sleep(10)

With the user functions
defined, they can then be
registered with the funcX client
locally

o fx.register_function(...)

The local funcX client can then
execute the request to the
remote funcX endpoint,
handling all communication
and authentication required

o fx.run(...)

While the job run on the
remote HPC system, can make
periodic requests for finished
results

o fxc.get_result(...)

o Returning the output of the user
defined functions

Execution with funcX: Scaling out jobs

register functions

infer_ func = fxc.register_function (infer_hypotest)
patchset = pyhf.PatchSet (json.load (patchset_json))

execute patch fits across workers and retrieve them when done
n_patches = len(patchset.patches)
tasks = {}
for patch_idx in range (n_patches):
patch = patchset.patches[patch_idx]
task_id = fxc.run(
workspace,
patch.metadata,
[patch.patch],
backend,
endpoint_id=pyhf_endpoint,
function_id=infer_func,
)
tasks[patch.name] = {"id": task_id, "result": None}

while count_complete (tasks.values()) < n_patches:
for task in tasks.keys():
if not tasks[task]["result"]:

try:
result = fxc.get_result (tasks[task] ["id"])
tasks[task] ["result"] = result

except Exception as excep:
print (f"inference: {excep}")
sleep(15)

e The workflow

o fx.register_function(...)

o fx.run(...)

can now be used to scale out as
many custom functions as the
workers can handle

e This allows for all the signal
patches (model hypotheses) in
a full analysis to be run
simultaneously across HPC
workers

o Run from anywhere (e.g. laptop)!
e The user analyst has written
only simple pure Python

o No system specific configuration
files needed

Scaling of Statistical Inference

feickert@ThinkPad-X1:~$ time python fit_analysis.py —-c config/1Lbb. json

e Example: Fitting all 125 models from pyhf pallet prepare: waiting-for-ep
prepare: waiting-for-ep

for published ATLAS SUSY 1Lbb analysis "~

<pyvhf.workspace.Workspace object at 0x7fb4cfe614£f0>

© DOIhttps//dOIorg/1017182/hepdata90607 Task CIN2_Wh_hbb_1000_0 complete, there are 1 results now
Task CIN2_Wh_hbb_1000_100 complete, there are 2 results now
e Wall time under 2 minutes 30 seconds Task CIN2_Wh_hbb_1000_150 complete, there are 3 results now
Task CIN2_Wh_hbb_1000_200 complete, there are 4 results now
o Downloadingof pyhf pallet from HEPData (local machine) Task CIN2_Wh_hbb_1000_250 complete, there are 5 results now
Task CIN2_Wh_hbb_1000_300 complete, there are 6 results now
o Registering functions (local machine) Task C1N2_Wh_hbb_1000_350 complete, there are 7 results now
Task CIN2_Wh_hbb_1000_400 complete, there are 8 results now
° Sendingserialization to funchndpoint (remOte HPC) Task CIN2_Wh_hbb_1000_50 complete, there are 9 results now

Task CIN2_Wh_hbb_150_0 complete, there are 10 results now

[e]

funcX executing all jobs (remote HPC)

Task CIN2_Wh_hbb_900_150 complete, there are 119 results now
Task CIN2_Wh_hbb_900_200 complete, there are 120 results now
inference: waiting-for-ep

L4 Dep|0yment5 Of funcx endp0|nts Currently used Task CIN2_Wh_hbb_900_300 complete, there are 121 results now

(o]

funcX retrieving finished job output (local machine)

H Task CIN2_Wh_hbb_900_350 complete, there are 122 results now
for testing —e T poete
Task CIN2_Wh_hbb_900_400 complete, there are 123 results now
. . . . Task CIN2_Wh_hbb_900_50 lete, th 124 1t
o University of Chicago River HPC cluster (CPU) s —THbR TR oY combrere, bhere are resuLEs now

Task CIN2_Wh_hbb_900_250 complete, there are 125 results now

o NCSABluewaters(CPU) — TTTTTTTTTTTTTTTTTTOo
o XSEDE Expanse (GPU JAX)

real 2m17.509s
user Om6.465s
sys Oml1.561s

https://www.hepdata.net/record/ins1755298
https://doi.org/10.17182/hepdata.90607

Scaling of Statistical Inference: Results

e Remember,the returned output is just the
function's return

e Our hypothesis test user function from earlier:

def infer_hypotest (workspace, metadata, patches, backend):
import time
import pyhf

pvhf.set_backend (backend)

tick = time.time ()
model = workspace.model (...)
data = workspace.data (model)

test_poi = 1.0
return {
"metadata": metadata,
"CLs_obs": float (
pyhf.infer.hypotest (
test_poi, data, model, test_stat="gtilde"
)
),
"Fit-Time": time.time () - tick,

e Allowing for easy and rapid serialization and
manipulation of results

e Time from submitting jobs to plot can be minutes

feickert@ThinkPad-X1:~$ python fit_analysis.py -c config/1lbb.Jjson > run.log
Some light file manipulation later to extract results.json from run.log

feickert@ThinkPad-X1:~$ jg .CIN2_Wh_hbb_1000_0 results.json

{
"metadata": {
"name": "CIN2_Wh_hbb_1000_0",
"values": [
1000,
0

]
br
"CLs_obs": 0.58567
"Fit-Time": 28.786

3708143126,

3
57233810425

feickert@ThinkPad-X1:~$ jg .CIN2_Wh_hbb_1000_0.CLs_obs results
0.5856783708143126

.json

10

Performance

e Fittimesforanalysesusing pyhf's NumPy 2000 RIVER
backend and SciPy optimizer orchestrated with m Mean wall time
funcX on River HPC cluster (CPU) over 10 trials) 3500 /7. Uncertainty
compared to a single RIVER node g 3000 o oingle node
ﬁ 2500 A Max blocks = 4
e Reported wall fit time is the mean wall fit time of v
. £ 2000 -
the trials =
S 15001
o Uncertainty on the mean wall time corresponds to the *g‘
standard deviation of the wall fit times = 10007
T 500
e Given the variability in resources available on real l
. . 0 -]
clusters, funcX config options governing resources | ce0 2020 691 rep 06 (2029 46 o3 (2020 0320%°
) 1
requested (nodes per block and max blocks) offer ur. PO phys. ReV-©
most useful worker comparison metrics Published analysis probability model
Analysis Patches Nodes per block Maxblocks Wall time (sec) Single node (sec)
Eur. Phys. J. C 80 (2020) 691 125 1 4 156.2+9.5 3842
JHEP 06 (2020) 46 76 1 4 312427 114

Phys. Rev. D 101 (2020) 032009 57 1 4 57.4 1+ 5.2 612

11

Constraints and Trade-offs

In [1]: import jax.numpy as jnp

e The nature of FaaS that makes it highly
scalable also leads to a problem for

: from jax import jit, random

In [2]: def selu(x, alpha=1.67, 1lmbda=1.05):
taklng advantage OfJUSt-In-tlme (JIT) return lmbda Jnp.where(x > 0, x, alpha Jjnp.exp(x) - alpha)
compiled functions
. In [3]: key = random.PRNGKey (0)
e To leverage JITed functions there
. : x = random.normal (key, (1000000,))
needs to be memory that is preserved e
. ° . I [4]: Stimeit lu (%)
across invocations of that function ’ T
850 ps * 35.4 ps per loop (mean *= std. dev. of 7 runs, 1000 loops each)
e Nature of FaaS: Each function call is S L
n [5]: selu_jit = jit (selu)

self contained and doesn't know about
global state In [6]: Stimeit selu_jit (x)

17.2 ps = 105 ns per loop (mean *+ std. dev. of 7 runs, 100000 loops each)
o funcXendpoint listens on a queue and invokes

functions 50X speedup from JIT

e Thoughts for future: Is it possible to create setup and tear down functionality to improve parallelized fitting?
o Setup: Send function(s) to JIT and keep them in state

o Tear down: Once jobs are finished clean up state

Summary

Through the combined use of the pure-Python libraries funcX and pyh £, demonstrated the ability to

parallelize and accelerate statistical inference of physics analyses on HPC systems through a (fitting) FaaS
solution

Without having to write any bespoke batch jobs, inference can be registered and executed by analysts with a
client Python API that still achieves the large performance gains compared to single node execution that is a
typical motivation of use of batch systems.

Allows for transparently switching workflows from CPU to GPU environments

o Further performance testing ongoing
Not currently able to leverage benefits of JITed operations, but investigating further

Motivates investigation of the scaling performance for large scale ensemble fits in the case of statistical
combinations of analyses and large dimensional scans of theory parameter space (e.g. phenomenological
minimal supersymmetric standard model (pMSSM) scans)

All code used public and open source!
o pyhf (GitHub)
o funcX(GitHub)
o Parsl (GitHub)
o Code for studies shown (GitHub)

13

https://github.com/scikit-hep/pyhf
https://github.com/funcx-faas/funcX
https://github.com/Parsl/parsl
https://github.com/matthewfeickert/distributed-inference-with-pyhf-and-funcX

Backup

14

Specifics of ROOT comparisons

e "Thing X outperforms ROOT" isn't specific enough to be very helpful

e Allclaims about performance against ROOT:
o MadeonROOTv6.22.02 orearlier

o Made given HistFactory models (not against wSMaker or something similar)
e Stillneed to be tested against the recent ROOT v6.24.00 release

e Forafitting service like what is being done with funcX fair comparisons are extremely difficult to create, and so
aren't reported directly here

15

Why use funcX as opposed to Dask?

e funcX provides a managed service secured by Globus Auth

e Endpoints can be set up by a site administrator and shared with authorized users through Globus Auth
Groups

e Testing has shown that Dask struggles to scale up to thousands of nodes, whereas the funcX High Throughput
Executor (HTEX) provided through Parsl scales efficiently

10"
ﬁ% 103% —o— |PP
E HTEX
= 103 —o— EXEX
% : 01_; FireWorks
a Dask
S 10% ——= Ideal
©
10 -

o LN | LAY | LA | LN | ! IIA'”"I o
100 10 10° 10> 10" 10°
Number of workers 16

https://parsl.readthedocs.io/en/stable/userguide/performance.html
https://parsl.readthedocs.io/
https://parsl.readthedocs.io/en/stable/userguide/performance.html

View of fitting Faa$S Analysis Facility Blueprint

FaaS Team

End users

Development

pyhf evolves over time.
Code on GitHub released
to PyPl and conda-forge.

New pyhf computations
that may be interesting to

expose.

GitHub

PyPI

S
CONDA-FORGE

conda-forge

Building

FuncX encapsulation of
Python functions.

Images are published to a
cloud registry (DockerHub?),
so they can be accessed.

& O

Docker

Cloud Registry

Deploying

Kubernetes is used to deploy

the functions.

High scalability plays nicely
with computational expensive

workflows.

&

Kubernetes

v1
v1.1
v2

Governance

Governance model required.

Someone needs to coordinate
new deployments across the
stack.

In addition to enable / disable
access through an auth DB.

Auth database

Continuous
effort

Ask for access Fit

Access request to the service. Users send HTTP requesis.
Given the amount of computing
power the service could use,
auth is required.

Users query the service,
with some basic auth
information.

Service validates user auth
before proceeding forward.

Some ticketing procedure must
be defined (GitHub issues?).

-
—
- g —
-
-
—~ o=
Access request =
— ." —>I®=
a4 oo
L — > 1@=
Continuous .' -
effort

17

References

1. Lukas Heinrich, Distributed Gradients for Differentiable Analysis, Future Analysis Systems and Facilities
Workshop, 2020.

2.Babuiji, Y., Woodard, A, Li, Z., Katz, D. S,, Clifford, B., Kumar, R., Lacinski, L., Chard, R.,, Wozniak, J., Foster, .,
Wilde, M., and Chard, K., Parsl: Pervasive Parallel Programming in Python. 28th ACM International Symposium
on High-Performance Parallel and Distributed Computing (HPDC). 2019.
https://doi.org/10.1145/3307681.3325400

18

https://indico.cern.ch/event/960587/contributions/4070325/
https://indico.cern.ch/event/960587/
https://doi.org/10.1145/3307681.3325400

The end.

18

