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• Managing memory transfer between separate memory space could be a burden in GPU 
programming 
- Especially when it involves complicated data structures

• In CUDA programming, unified memory aims to provide a single memory space 
- Memory transfers are hidden to programmers, and are done on-demand via page faults

• Pros: Easier to write code
• Cons: Performance penalties, e.g. overhead caused by the page faults 
- Can be mitigated via data prefetching

• Use CMS heterogenous pixel reconstruction as a realistic use case to evaluate the performance 
impact
- Original code is fully integrated in CMSSW
- To be run in HLT farm in 2022
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CMS Heterogeneous Pixel Reconstruction
• About 40 CUDA kernels organized in 5 modules
- arXiv:2008.13461
• Extracted from CMSSW into a standalone application for flexibility
• Input: Raw data in pixel detector (~250 kB/event) 

Output: pixel tracks and vertices (~ 4MB for tracks, ~90 kB for vertices)
• Test data: Recycled 1000  events + pileup 50 simulation from CMS Open Data  

• BeamSpot/Clusters/RecHits transfer data from host to device
- Clusters module is only modules that transfer data from device to host
• Events are processed concurrently using TBB Tasks
- On the device, BeamSpot/Clusters get separate CUDA streams
• What we include in the time measurement: H2D transfer + kernel time
• Not included: disk I/O, transfer of output

tt̄
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In this work, we evaluate the performance impact of the CUDA unified memory com-18

pared to manage the separate host and device memory spaces explicitly. We use the Patatrack19

heterogeneous pixel reconstruction workflow [2] from the CMS experiment [3] at the CERN20

LHC [4] as a use case for a set of realistic HEP reconstruction algorithms that are able to21

e↵ectively utilize a GPU. Even if of this study being specific to CUDA, we believe the con-22

clusions largely hold on other technologies as well, except for a case where the host and the23

device share the same physical memory. In addition, some approaches for portable code be-24

tween CPU and GPUs rely on unified memory or equivalent, for example in NVIDIA HPC25

Compiler support for C++ parallel algorithms [5].26

This paper is organized as follows. Technical aspects of the Patatrack pixel reconstruc-27

tion are described in Section 2. The use of CUDA unified memory in the Patatrack code is28

discussed in Section 3. Performance measurements and their results are shown in Section 4,29

and conclusions are given in Section 5.30

2 Structure of the pixel reconstruction application31

The Patatrack pixel reconstruction pioneered o✏oading algorithms to NVIDIA GPUs with32

direct CUDA programming within the CMS data processing software (CMSSW) [6]. The33

o✏oaded chain of reconstruction algorithms takes the raw data of the CMS pixel detector as34

an input, along with the beamspot parameters and necessary calibration data, and produces35

pixel tracks and vertices as an output. CMSSW schedules algorithms as units that are called36

modules. The algorithms are organized in five CMSSW framework modules, depicted in37

Figure 1 as a directed acyclig graph (DAG) by their data dependencies, that communicate38

the intermediate data in the device memory through the CMSSW event data. The BeamSpot39

module only transfers the beamspot data to the device memory. The Clusters module transfers40

the raw data to the device memory, unpacks them, calibrates the individual pixels, and clusters41

the pixels on each detector module. The RecHits module estimates the 3D position of each42

cluster and forms hits. The Tracks module forms n-tuplets from the hits and fits the hit n-43

tuplets to obtain track parameters, and the Vertices module forms vertices from these tracks.44

There are further modules that optionally transfer the tracks and vertices to the CPU, and45

convert the Structure-of-Array (SoA) data structures to the data formats used by downstream46

algorithms in CMSSW, but those are not considered in this work and therefore not shown in47

Figure 1.48

The CUDA code of the Patatrack pixel reconstruction was extracted into a standalone49

program [7] mainly to explore performance portability technologies. The separation from50

CMSSW gives freedom e.g. for compilers, build rules, external libraries, and code organi-51

zation that would be more laborious to achieve in the full CMSSW software stack. These52
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Figure 1. Directed acyclic graph of the framework modules in the Patatrack pixel reconstruction. The
arrows denote the data dependencies of the modules, e.g. RecHits module depends on BeamSpot and
Clusters modules. The Clusters module (red rectangle) is the only one that transfers data from the device
to the host and uses the ExternalWork synchronization mechanism, while the other modules (blue oval)
do not.
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Programming Experience with Unified Memory
• The benefit brought by unified memory depends on the application

• Significantly easier to use unified memory on condition data
- Transfer only once in the beginning of the job
- Otherwise need to allocate and transfer memory to each GPU device  

while keeping host pinned memory alive

• Not much benefit for applying unified memory on event data
- Would be helpful for data structure  

using pointers of pointers  
- Not heavily used in Patatrack
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Performance

• Measured on Cori GPU nodes at NERSC using a single GPU (NVIDIA V100)
- Intel Xeon Gold 6148 ("Skylake") processors with 20 cores, 2 threads per core
- No other activities on the CPU, all threads are pinned to a single socket 
- Repeated 8 times on random nodes (shown as the uncertainty)
- Each job takes around 5 min, processing the set of  

1000 events multiple times  
- Use explicit memory result as reference

• When unified memory on condition data is used,  
throughput is within 1% of explicits memory result.
- This is expected as the memory transfer is  

only done once. 
• When unified memory is used, drop to 33-50% of  

explicit memory throughput

• General trend of lower throughput with   
more modules using unified memory
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Data Prefetching / Memory advise
• We tried to use two features designed to reduce the performance penalty
- Data prefetching: Intended to avoid page faults by prefetching the data before access
- Memory advise(read-only): Provide hints for CUDA that specific memory ranges are read-only
• Use on condition data & data transfer from host to device

• 4 possible combinations: (with/without advise) x (with/without prefetch)
- Best performance: With advise, but without data prefetch (blue)
- Memory advise only gives better performance (~15-20%) (blue/green) when it’s done without 

data prefetching
- Data prefetching only gives better performance (~10%) (red/orange) when it’s done without 

advise
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Summary

• We tested the performance of CUDA unified memory with CMS pixel reconstruction 
Patatrack as a realistic HEP use case

• Performance penalty from unified memory could be very significant (~50-70%)
- Contrary to expectation, enabling data prefetching could decrease the performance

• Benefit brought by unified memory is less attractive if heavy-fine tuning  
is needed to avoid steep performance penalty 

• What we found could be applicable to more than just CUDA:
- Other GPU programming models have similar ideas as unified memory
- For example, NVidia’s compiler support for portable code via C++ between CPU and 

GPU relies on unified memory 

• Performance reduction could be related to lock contention of the global mutex within 
CUDA runtime
- To be confirmed with detailed profiling 
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