
A Portable Implementation of RANLUX++

Jonas Hahnfeld, Lorenzo Moneta

May 18, 2021

1 / 7



Random Number Generators in High Energy Physics

I Generators with excellent quality and statistical properties:
I MIXMAX (1991 / 2015)
I RANLUX (1993 / 1994)

I RANLUX: subtract-with-borrow generator with simple recursion
I Waste intermediate states to decorrelate generated numbers
→ Luxury level: higher quality with longer computing time

I RANLUX++: use the equivalent Linear Congruential Generator (LCG)
I Avoid computing unneeded intermediate results, much higher quality “for free”
I Advantage: fast skipping of numbers / “jumping” in generated sequence

2 / 7



Portable RANLUX++ for ROOT

I RANLUX++: requires large state and multipliers (576 bits)
I Shown to be profitable by A. Sibidanov in 2017
I Arithmetic operations implemented in assembler for x86 architecture
I For ROOT data analysis framework: portable implementation with standard C++

I Include a fix to avoid bias in generated numbers (not equally distributed)
I Reported and solution proposed by M. Lüscher
⇒ Convert LCG state back to RANLUX numbers

3 / 7



Optimization on x86

initial unrolling overflow __int128 carry conversion
0

5

10

15

20

25

30

35

40

tim
e 

pe
r 

nu
m

be
r 

[n
s]

GCC 7.5.0
GCC 8.3.1
Clang 10.0.1
ranlxd2
assembler

I AMD Ryzen 3900, produce
double precision numbers

I Baselines:
I assembler implementation

by Sibidanov (bottom line)
I ranlxd2 by Lüscher

I Last column: conversion back
to RANLUX numbers

4 / 7



Portability - Apple M1

I Implementation works on new
architecture

I Optimizations give similar
benefits

initial unrolling overflow __int128 carry conversion
0

5

10

15

20

25

30

35

40

tim
e 

pe
r 

nu
m

be
r 

[n
s]

Clang on x86 (AMD Ryzen 3900)

Apple clang on M1 (mac Mini)

5 / 7



Portability - Nvidia GPUs

I Portable code can be reused with minor modifications:
I Remove the dependency on ROOT’s interface TRandomEngine
I Hardcode the luxury level p = 2048 (recommended value)
I Add annotations host device
I Disable type int128 on the device

I Acceptable performance on the GPU (11.7 seconds for 1011 numbers)
I Condition: threads must advance state at the same time
I Slower than default generator in cuRAND (XORWOW, 3.1 seconds)
I But: much better properties, already used in AdePT (MC simulation on GPUs)

6 / 7



Conclusion

I Portable implementation of RANLUX++
I No assembler, only standard C++
I Included in ROOT data analysis framework

I Portable optimizations on x86
I Reached very competitive performance

I Tested on Apple M1 and Nvidia GPUs

I Work to get into GNU Scientific Library (GSL) and C++ standard

7 / 7


