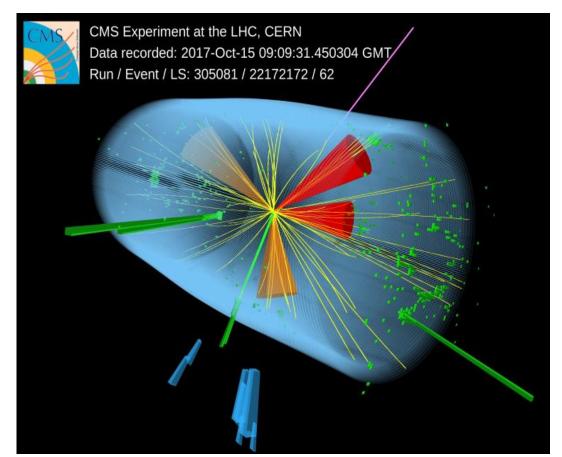


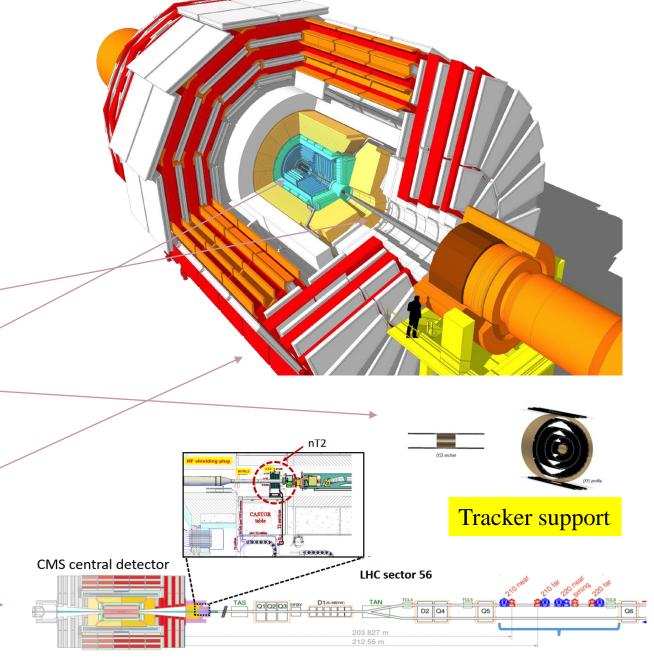
CMS Full Simulation for Run-3

Vladimir Ivanchenko, Sunanda Banerjee, Gabrielle Hugo, Sergio Lo Meo, Ianna Osborne, Kevin Pedro, Danilo Piparo, Dmitry Sorokin, Phat Srimanobhas, and Carl Vuosalo on behalf of the CMS Collaboration

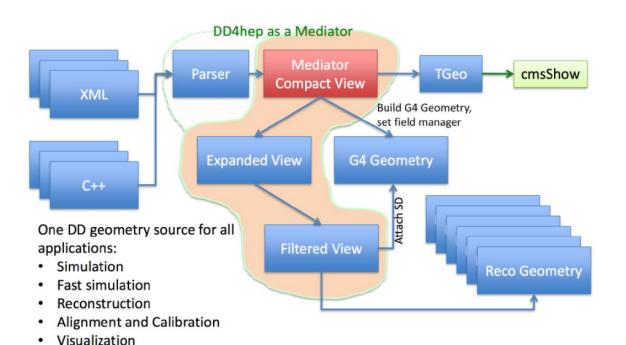


Outline

- CMS geometry upgrade
- Migration to DD4Hep
- Adaptation of Geant4 10.7
- Configuration of Geant4 Physics
- Fast parameterization of electromagnetic showers
- Summary



References for CMS FullSim for Run-2:


- D.J. Lange et al., J. Phys.: Conf. Ser. 608, 012056 (2015)
- M. Hildreth et al., J. Phys.: Conf. Ser. 664, 072022 (2015)
- M. Hildreth et al., J. Phys.: Conf. Series 898, 042040 (2017)
- V. Ivanchenko and S. Banerjee, EPJ Web of Conf. 214, 02012 (2019)

CMS geometry upgrade

- Geometry update for Run-3
 - New beam pipe
 - More accurate description of tracker support structure
 - Improved description of muon system, addition of GEM stations
 - Updated forward and very forward detectors

Migration to DD4Hep

- For Run-1 and Run-2 CMS used custom detector description (DDD)
 - For each sub-detector original approach was developed by each subdetector team
- For Run-3 a migration to the community developed tool DD4Hep was chosen
 - F. Gaede et al., EPJ Web of Conferences 245, 02004 (2020)
 - C. Vuosalo et al., EPJ Web of Conferences 245, 02032 (2020)
- Migration required contributions from several sub-detector teams
 - Was started in 2019 and included full review of the CMS geometry
 - XML files were reviewed and unified
 - Run-3 DD4Hep description is currently being validated by the CMS central testing team
 - The migration effort provided good opportunity to verify CMS geometry, remove overlaps, and improve accuracy of volume positions and representations
- We would like to thank Markus Frank (LHCb) and the DD4Hep team for prompt reactions to any our request
 - DD4hep code was also improved during this CMS campaign

Adaptation of Geant4 10.7

```
2015 Geant4 10.0p02
2017 Geant4 10.2p02
2018 Geant4 10.4p03
+ VecGeom

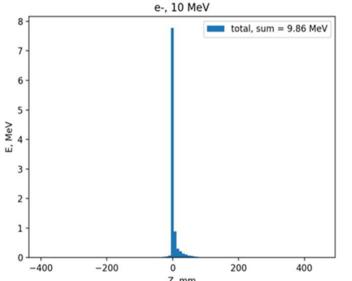
2021 Geant4 10.7p01
+ DD4Hep
```

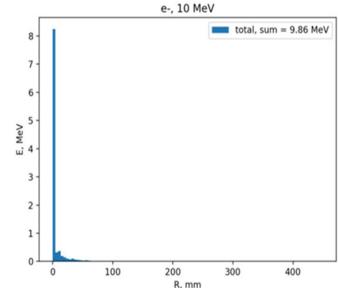
CMS Geant4 version for Run-2 was updated

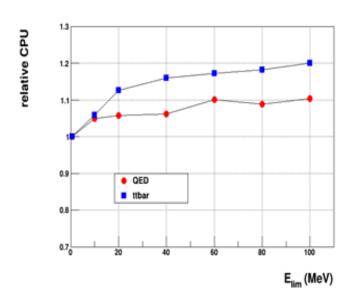
- Evolution of Geant4 version was possible, because CMS subdetectors were modified for each new season
 - MT mode from 2017
 - Geant4 10.4p03 + VecGeom since 2018 legacy MC production
- The configuration of physics was established during LS1 including FTFP_BERT_EMM Physics Lists, Russian roulette method, and HF shower library

Geant4 10.7 was the CMS target release for Run-3

- No change of sub-detectors is expected during Run-3
 - 10.7 is the most recent Geant4 version available during LS2
- The current version is 10.7p01
 - a new patch 10.7p02 is expected in June
- A procedure of validation for each new Geant4 version was established in CMS since Run-1
 - Validation started 6 months before the date of any Geant4 release, feedback to the Geant4 team is provided
 - Integrations tests, test-beam analysis, and comparisons with the detector data are performed
 - see talk of S.Banerjee today for more details


Configuration of Geant4 Physics


- Physics List for FTFP_BERT_EMM
 - The same for Run-2 and Run-3
- To achieve the agreement between CMS test-beam and detector data two revisions were introduced in simulation for Run-3:
 - Overlap energies between the Bertini Cascade and the FTFP string model for pions is set from 3 to 12 GeV
 - The default is from 3 to 6 GeV
 - The Birks coefficient for the HCAL scintillator is increased by about 15%


- Magnetic field driver G4DormandPrince745
 - both for Run-2 legacy processing and Run-3
- A smart configuration of Geant4 parameters for tracking in field is implemented with 3 sets of parameters
 - set 1 for central detector region R < 8 m, |Z| < 11 m, and E > 200 MeV;
 - set 2 for low-energy particles E < 15 MeV;
 - set 3 for the rest.
- Dynamic switch between these 3 sets during tracking is performed
 - Providing accuracy for tracking of relativistic particle
 - Reducing tracking problems for low-energy sparing e⁺⁻

Magnetic field parameters	Parameter set 1	Parameter set 2	Parameters set 3
DeltaIntersection (mm)	10-6	0.01	10 ⁻⁴
DeltaOneStep (mm)	10-4	0.1	10-3
DeltaChord (mm)	10-3	0.1	2.10-3
MaxStep (cm)	150	150	50

Fast parameterization of electromagnetic showers

5/18/2021

- Hybrid simulation of EM showers inside CMS ECAL
 - low-energy e⁺⁻ may be parameterized below 20 MeV
- Proposed method is currently under CMS testing

- Parametrized energy fraction deposited in-place E₀
- Parametrized $E_{tail}(Z)$, $E_{tail}(R)$
- In run time
 - Deposit E₀ in-place
 - Sample Etail = $E E_0$ hits in space factorizing distributions for $Z \sim E_{tail}(Z)$ and $R \sim E_{tail}(R)$

CPU effect as a function of the energy threshold

Summary

Intensive development carried out during LS2 for CMS FullSim

- Geometry for Run-3 was updated
- Run-3 geometry description migrated to DD4hep and currently being validated
 - Next step would be full migration to the DD4Hep tool for the Phase-2 detectors
- Geant4 10.7 is adopted
 - Required slight modification of physics configurations
 - Provides CPU advantage ~8 % compared to Run-2

Fast parameterization of low-energy e+- inside ECAL is introduced

• The method is under testing

CPU speed-up for Run-3 FullSim production is expected