= PRINCETON (g iris
UNIVERSITY hep

: AwkwardForth
deserialization DSL + Awkward-Array + ;

Jim Pivarski, lanna Osborne, Pratyush Das, David Lange, and Peter Elmer
Princeton University — IRIS-HEP

May 19, 2021

vCHEP 2021 contribution 4324131

1/15


https://indico.cern.ch/event/948465/contributions/4324131/

Deserializing columnar data can be very fast

TBasket of float[]

| |contiguous data | |byte offsets| |

2/15



Deserializing columnar data can be very fast

TBasket of float[]

| |contiguous data | |byte offsets| |

ak.Array
ak.layout.ListOffsetArray32
ak.layout.Index32
ak.layout.NumpyArray

|c0ntent |

2/15



o @

Deserializing columnar data can be very fast

TBasket

of float[]

| |contiguous data

| |byte offsets| |

ak.Array

ak.layout.ListOffsetArray32

a

direct reference
(no copy)

K.layout.Index32

subtract fKeylen
and divide by 4

offsets

K.layout.NumpyArray

(NumPy)

—>:content

" Deserialization” consists
of O(1) metadata-only
operations and O(n)
vectorizable operations.

2/15



Deserializing record-oriented is more limited

TBasket of std::vector<std::vector<float>>

| |data||data||data||... | |byte offsets| |

ak.Array
ak.layout.ListOffsetArray32
ak.layout.Index32
ak.layout.ListOffsetArray32
ak.layout.Index32
ak.layout.NumpyArray

| content |

Record-oriented data, on
the other hand, must be
iterated sequentially, with
control-flow decisions
throughout.

For Uproot, this means
that reading lists of lists
of numbers (in Python) is
460x slower than reading
numbers (NumPy cast).

2/15



The general problem of deserialization

1. Data types are not known until you examine the data’'s schema.
2. Knowing data types is essential for generating fast code.

3/15



The general problem of deserialization

1. Data types are not known until you examine the data’'s schema.
2. Knowing data types is essential for generating fast code.

Suitable for Uproot?

This is what Uproot does, and as
we've seen, it's too slow.

Potential solutions
Generate deserialization code in a
dynamic language, like Python.

3/15



The general problem of deserialization

1. Data types are not known until you examine the data’'s schema.
2. Knowing data types is essential for generating fast code.

Potential solutions Suitable for Uproot?

Generate deserialization code in a This is what Uproot does, and as
dynamic language, like Python. we've seen, it's too slow.

Require a compilation step for every That's a cumbersome workflow if

data file (like Protobuf). you have several datasets.

3/15



The general problem of deserialization

1. Data types are not known until you examine the data’'s schema.
2. Knowing data types is essential for generating fast code.

Potential solutions

Generate deserialization code in a
dynamic language, like Python.
Require a compilation step for every
data file (like Protobuf).
JIT-compile the deserialization code
(like ROOT, using Cling).

Suitable for Uproot?

This is what Uproot does, and as
we've seen, it's too slow.

That's a cumbersome workflow if
you have several datasets.
Adding LLVM as a dependency
would undermine portability.

3/15



The general problem of deserialization

1. Data types are not known until you examine the data’'s schema.
2. Knowing data types is essential for generating fast code.

Potential solutions Suitable for Uproot?

Generate deserialization code in a This is what Uproot does, and as
dynamic language, like Python. we've seen, it's too slow.

Require a compilation step for every That's a cumbersome workflow if
data file (like Protobuf). you have several datasets.
JIT-compile the deserialization code Adding LLVM as a dependency
(like ROOT, using Cling). would undermine portability.

Use a parser combinator library. ROQOT deserialization requires

advanced language features.

3/15



The general problem of deserialization

1. Data types are not known until you examine the data’'s schema.
2. Knowing data types is essential for generating fast code.

Potential solutions Suitable for Uproot?

Generate deserialization code in a This is what Uproot does, and as

dynamic language, like Python. we've seen, it's too slow.

Require a compilation step for every That's a cumbersome workflow if

data file (like Protobuf). you have several datasets.

JIT-compile the deserialization code Adding LLVM as a dependency

(like ROOT, using Cling). would undermine portability.

Use a parser combinator library. ROQOT deserialization requires
advanced language features.

Create a lightweight/specialized That's the subject of this talk.

virtual machine.
3/15



“Lightweight” virtual machines?

The most numerous virtual machines are not Java, VirtualBox,
Xen, etc., but regex string-matching.

Ken Thompson, Regular Expression Search Algorithm, 1968.

-
oo O
an i

a-(ble)¥-d

4/15



“Lightweight” virtual machines?

The most numerous virtual machines are not Java, VirtualBox,
Xen, etc., but regex string-matching.

Ken Thompson, Regular Expression Search Algorithm, 1968.

-
oo O
an i

a-(ble)¥-d

A regex string like "a (b |c) »d" gets compiled into a finite state machine for fast
execution. Limiting the scope of the machine provides opportunities for optimization.

4/15



“Lightweight” virtual machines?

The most numerous virtual machines are not Java, VirtualBox,
Xen, etc., but regex string-matching.

Ken Thompson, Regular Expression Search Algorithm, 1968.

-
oo O
an i

a-(ble)¥-d

A regex string like "a (b |c) »d" gets compiled into a finite state machine for fast
execution. Limiting the scope of the machine provides opportunities for optimization.

Python's st ruct module (bytestring-parsing) and numexpr (math) are similar.

4/15



Another issue: Uproot and Awkward Array must be independent

ﬁproot Awlkward

Specializes in ROOT file Should know nothing
(de)serialization. about ROOT files.

Python-only. Has a compiled C++ part.

5/15



Another issue: Uproot and Awkward Array must be independent

ﬁproot Awlkward

Specializes in ROOT file Should know nothing
(de)serialization. _...about ROOT ﬁles

Python-only. fl-(;tb\l;m.

5/15



Another issue: Uproot and Awkward Array must be independent

“Here is a TBasket and instructions
for deserializing it.”
Builds & runs

2 T et
Gproot  Awkiard
“~

“Here is the deserialized array.”

Specializes in ROOT file Should know nothing
(de)serialization. _..about ROOT files.

Python-only. dobuld “Tias a complled C++ part.™

5/15



Another issue: Uproot and Awkward Array must be independent

“Here is a TBasket and instructions
for deserializing it.”
Builds & runs

2 ~ T A
Gproot  Awkiard
“~

“Here is the deserialized array.”

Specializes in ROOT file Should know nothing
(de)serialization. _..about ROOT files.

Python-only. dobuld “Tias a complled C++ part.™

Uproot needs a language to express how to deserialize a TBasket, but it doesn't
need to be a human language.
5/15



So, how about Forth?

| heard about it through CollapseOS,
which targets underpowered but
ubiquitous hardware (Z80 chips).

6/15



So, how about Forth?

| heard about it through CollapseOS,
which targets underpowered but
ubiquitous hardware (Z80 chips).

Forth was invented in 1970 to control
radio astronomy telescopes and was
popular in early PCs because of the
limited hardware.

» First Mac couldn’t run a compiler;
Forth was the only developer
environment to make applications.

6/15



So, how about Forth?

| heard about it through CollapseOS,
which targets underpowered but
ubiquitous hardware (Z80 chips).

Forth was invented in 1970 to control
radio astronomy telescopes and was
popular in early PCs because of the
limited hardware.

» First Mac couldn’t run a compiler;
Forth was the only developer
environment to make applications.

Almost no grammar, easy to generate.
The Postscript language is a Forth.

6/15



What does Forth look like? ¥

: fibonacci ( pops n -- pushes nth-fibonacci-number )
dup
1> if
1- dup 1- fibonacci
swap fibonacci
+
then

( pushes [0 1 1 2 3 5 8 13 21 34 55 89 144 233 377] onto the stack )

15 0 do
i fibonacci
loop
There's a global stack, words like “1" push a number on the stack, and words like
“>" and “1f" pop values off the stack, apply operations, and push the result.

Other than control flow like “: ... ;" and “do ... loop," it goes left to right. /
7/15



AwkwardForth: a dialect of Forth with built-in parsing

Deserializing std: : vector<std: :vector<float>> from a ROOT TBasket:

0 offsets® <- stack ( offsets start at zero )
0 offsetsl <- stack
0 offsets2 <- stack

begin
byte_offsets i-> stack ( get a position from the byte offsets )
6 + data seek ( seek to it plus a 6-byte header )
data !i-> stack ( get the std::vector size )
dup offsets® +<- stack ( add it to the offsets )
0 do ( and use it as the loop counter )
data !i-> stack ( same for the inner std::vector )
dup offsetsl +<- stack
® do
data !i-> stack ( and the innermost std::vector )
dup offsets2 +<- stack
data #!f-> content ( finally, the floating point values )
loop
loop
again ( ends with a "seek beyond" exception )

8/15



Provides a way for Uproot to talk to Awkward Array ' &

» Knowledge of ROOT I/O stays in Uproot.

» Uproot generates an AwkwardForth program as a string (loose coupling).

> Awkward Array builds and runs the machine to get an Awkward Array as output.
» No humans need to read or write the Forth code (except for debugging).

0 offsets® <- stack
0 offsetsl <- stack
0 offsets2 <- stack

begin
byte_offsets i-> stack
6 + data seek
data !i-> stack
dup offsets® +<- stack
0 do
data !i-> stack
dup offsetsl +<- stack
0 do
data !i-> stack
dup offsets2 +<- stack
data #!£f-> content
loop
loop
again

( offsets start at zero ) TBasket of std::vector<std::vector<float>>

| |Ien||Ien"data"Ien"data"len"data"... I |byte offsetsl I

( get a position from the byte offsets )
( seek to it plus a 6-byte header ) ak.Array

( get the std::vector size ) A
( add it to the offsets ) ak.layout.ListOffsetArray32
( and use it as the loop counter ) ak.layout.Index32
( same for the inner std::vector )
offsets 1

ak.layout.ListOffsetArray32

( and the innermost std::vector ) ak. layout Index32

( finally, the floating point values )
ak.layout.NumpyArray

( ends with a "seek beyond" exception ) |c0ntent |

9/15



Performance for ROOT deserialization (higher is better)

Uncompressed ROOT files — Awkward Arrays (warm cache)
A C++ROOT MW Python (current Uproot) @ AwkwardForth (future Uproot) 4 RNTuple

—é 4 ¢
< 1000
o)
"
@ —® *
2 100
Q
©
c
2 10
©
N
s —a
@
» 1
[
a
float std::vector<float> doubly nested triply jagged

AwkwardForth is several times slower than compiled C++, but on par when data
throughput is included. Compare also Python (current Uproot) and RNTuple.

¥

10/15



Performance for Avro deserialization (higher is better) &

Uncompressed Avro files — Awkward Arrays (warm cache)

A fastavro @ AwkwardForth

g —
%
2 100
Q
© A A A
E "
2 10
©
N
®
? 1
[
a
float arrays of float doubly nested triply nested

Since the language can handle any parsing problem, consider other formats like

Avro. The fastavro library is C code, but doesn't know data types in advance.
11/15



Performance for Parquet deserialization (higher is better) 4

Uncompressed Parquet files — Awkward Arrays (warm cache)
A pyarrow @ AwkwardForth

< 1000

2 - A
& A
2 100

Q

S —— —e
c

2 10

©

N

s

? 1

[

a

float repeated group of float doubly nested triply nested

Keep going: consider Parquet. Here, AwkwardForth doesn’t do as well as

pyarrow's C++ parser because Parquet is a columnar format (like RNTuple).
12/15



Parallel processing performance of AwkwardForth and Python ka

AwkwardForth (future Uproot) Python (current Uproot)

10000 30
g 7500 g

g E 20
] 2
e 5000 e
c [ =4

s S 10
© )
S 2500 5
3 3
[a] o

0 0

0 20 40 60 80 0 20 40 60 80
Number of threads Number of threads

AwkwardForth machines are lightweight: we can make one per thread. Python is
inhibited by the GIL. Scales linearly up to RAM access ceiling (5 GB/sec).

13/15



Closing remarks

» See the paper for more details, including application to
TypedArrayBuilder.

14/15



Closing remarks &

» See the paper for more details, including application to
TypedArrayBuilder.

» A complete Forth implementation is small (< 5k lines of C++)
and fast (5 ns per instruction).

14/15



Closing remarks \

» See the paper for more details, including application to
TypedArrayBuilder.

» A complete Forth implementation is small (< 5k lines of C++)
and fast (5 ns per instruction).

» Particularly useful for communicating algorithms between
software libraries with restricted (sandboxed) runtimes.

14/15



Closing remarks \

» See the paper for more details, including application to
TypedArrayBuilder.

» A complete Forth implementation is small (< 5k lines of C++)
and fast (5 ns per instruction).

» Particularly useful for communicating algorithms between
software libraries with restricted (sandboxed) runtimes.

» Uproot's Python-generating routines must now be supplemented
by Forth-generating routines; targeting the end of this year.

14/15



https://iris-hep.org/fellow_projects.html

About~¥ Connect~ Activities ¥ Fellows Jobs

Open IRIS-HEP fellow projects

This page lists a number of known software R&D projects of interest to IRIS-HEP researchers. (This page will be updated from time
to time, so check back and reload to see if new projects have been added.) Contact the mentors for more information about any of
these projects! Be sure you have read the guidelines.

« Accelerating Uproot with AwkwardForth: Uproot is a Python library that reads and writes ROOT files, the file format for
nearly all particle physics data. (Over an exabyte of data is stored in the ROOT format.) As described in this talk, Uproot can
only read data types that have a columnar layout quickly; data types with a record-oriented layout are hundreds of times
slower. The same talk describes a solution: generating AwkwardForth code to read the data, rather than generating Python
code to read the data, where AwkwardForth is a dialect of Forth, specialized for deserializing record-oriented data into
columnar data. A successful candidate would add routines to generate AwkwardForth code in Python to deserialize C++
objects into Awkward Arrays—a very multilingual experience! The successful candidate would also monitor performance:
adding these routines is expected to speed up deserialization of types like std: :vector<std: :vector<float>> by over 100x

(see talk and the accompanying paper). (Contact(s): Jim Pivarski lanna Osborne )
15/15


https://iris-hep.org/fellow_projects.html

