
: AwkwardForth
deserialization DSL + Awkward-Array + ;

Jim Pivarski, Ianna Osborne, Pratyush Das, David Lange, and Peter Elmer

Princeton University – IRIS-HEP

May 19, 2021

vCHEP 2021 contribution 4324131
1 / 15

https://indico.cern.ch/event/948465/contributions/4324131/


Deserializing columnar data can be very fast

TBasket of float[]

byte offsetscontiguous data

2 / 15



Deserializing columnar data can be very fast

TBasket of float[]

byte offsetscontiguous data

ak.Array

ak.layout.ListOffsetArray32

ak.layout.Index32

ak.layout.NumpyArray

offsets

content

2 / 15



Deserializing columnar data can be very fast

TBasket of float[]

byte offsetscontiguous data

ak.Array

ak.layout.ListOffsetArray32

ak.layout.Index32

ak.layout.NumpyArray

offsets
subtract fKeylen
and divide by 4
(NumPy)

content

direct reference
(no copy)

”Deserialization” consists
of O(1) metadata-only
operations and O(n)
vectorizable operations.

2 / 15



Deserializing record-oriented is more limited

ak.Array

ak.layout.ListOffsetArray32

ak.layout.Index32

TBasket of std::vector<std::vector<float>>

byte offsetslen

offsets 1

len data len data len data ...

ak.layout.ListOffsetArray32

ak.layout.Index32

ak.layout.NumpyArray

offsets 2

content

Record-oriented data, on
the other hand, must be
iterated sequentially, with
control-flow decisions
throughout.

For Uproot, this means
that reading lists of lists
of numbers (in Python) is
460× slower than reading
numbers (NumPy cast).

2 / 15



The general problem of deserialization

1. Data types are not known until you examine the data’s schema.

2. Knowing data types is essential for generating fast code.

Potential solutions

Generate deserialization code in a
dynamic language, like Python.

Require a compilation step for every
data file (like Protobuf).

JIT-compile the deserialization code
(like ROOT, using Cling).

Use a parser combinator library.

Create a lightweight/specialized
virtual machine.

Suitable for Uproot?

This is what Uproot does, and as
we’ve seen, it’s too slow.

That’s a cumbersome workflow if
you have several datasets.

Adding LLVM as a dependency
would undermine portability.

ROOT deserialization requires
advanced language features.

That’s the subject of this talk.

3 / 15



The general problem of deserialization

1. Data types are not known until you examine the data’s schema.

2. Knowing data types is essential for generating fast code.

Potential solutions

Generate deserialization code in a
dynamic language, like Python.

Require a compilation step for every
data file (like Protobuf).

JIT-compile the deserialization code
(like ROOT, using Cling).

Use a parser combinator library.

Create a lightweight/specialized
virtual machine.

Suitable for Uproot?

This is what Uproot does, and as
we’ve seen, it’s too slow.

That’s a cumbersome workflow if
you have several datasets.

Adding LLVM as a dependency
would undermine portability.

ROOT deserialization requires
advanced language features.

That’s the subject of this talk.

3 / 15



The general problem of deserialization

1. Data types are not known until you examine the data’s schema.

2. Knowing data types is essential for generating fast code.

Potential solutions

Generate deserialization code in a
dynamic language, like Python.

Require a compilation step for every
data file (like Protobuf).

JIT-compile the deserialization code
(like ROOT, using Cling).

Use a parser combinator library.

Create a lightweight/specialized
virtual machine.

Suitable for Uproot?

This is what Uproot does, and as
we’ve seen, it’s too slow.

That’s a cumbersome workflow if
you have several datasets.

Adding LLVM as a dependency
would undermine portability.

ROOT deserialization requires
advanced language features.

That’s the subject of this talk.

3 / 15



The general problem of deserialization

1. Data types are not known until you examine the data’s schema.

2. Knowing data types is essential for generating fast code.

Potential solutions

Generate deserialization code in a
dynamic language, like Python.

Require a compilation step for every
data file (like Protobuf).

JIT-compile the deserialization code
(like ROOT, using Cling).

Use a parser combinator library.

Create a lightweight/specialized
virtual machine.

Suitable for Uproot?

This is what Uproot does, and as
we’ve seen, it’s too slow.

That’s a cumbersome workflow if
you have several datasets.

Adding LLVM as a dependency
would undermine portability.

ROOT deserialization requires
advanced language features.

That’s the subject of this talk.

3 / 15



The general problem of deserialization

1. Data types are not known until you examine the data’s schema.

2. Knowing data types is essential for generating fast code.

Potential solutions

Generate deserialization code in a
dynamic language, like Python.

Require a compilation step for every
data file (like Protobuf).

JIT-compile the deserialization code
(like ROOT, using Cling).

Use a parser combinator library.

Create a lightweight/specialized
virtual machine.

Suitable for Uproot?

This is what Uproot does, and as
we’ve seen, it’s too slow.

That’s a cumbersome workflow if
you have several datasets.

Adding LLVM as a dependency
would undermine portability.

ROOT deserialization requires
advanced language features.

That’s the subject of this talk.

3 / 15



The general problem of deserialization

1. Data types are not known until you examine the data’s schema.

2. Knowing data types is essential for generating fast code.

Potential solutions

Generate deserialization code in a
dynamic language, like Python.

Require a compilation step for every
data file (like Protobuf).

JIT-compile the deserialization code
(like ROOT, using Cling).

Use a parser combinator library.

Create a lightweight/specialized
virtual machine.

Suitable for Uproot?

This is what Uproot does, and as
we’ve seen, it’s too slow.

That’s a cumbersome workflow if
you have several datasets.

Adding LLVM as a dependency
would undermine portability.

ROOT deserialization requires
advanced language features.

That’s the subject of this talk.

3 / 15



“Lightweight” virtual machines?

The most numerous virtual machines are not Java, VirtualBox,
Xen, etc., but regex string-matching.

Ken Thompson, Regular Expression Search Algorithm, 1968.

A regex string like "a(b|c)*d" gets compiled into a finite state machine for fast
execution. Limiting the scope of the machine provides opportunities for optimization.

Python’s struct module (bytestring-parsing) and numexpr (math) are similar.

4 / 15



“Lightweight” virtual machines?

The most numerous virtual machines are not Java, VirtualBox,
Xen, etc., but regex string-matching.

Ken Thompson, Regular Expression Search Algorithm, 1968.

A regex string like "a(b|c)*d" gets compiled into a finite state machine for fast
execution. Limiting the scope of the machine provides opportunities for optimization.

Python’s struct module (bytestring-parsing) and numexpr (math) are similar.

4 / 15



“Lightweight” virtual machines?

The most numerous virtual machines are not Java, VirtualBox,
Xen, etc., but regex string-matching.

Ken Thompson, Regular Expression Search Algorithm, 1968.

A regex string like "a(b|c)*d" gets compiled into a finite state machine for fast
execution. Limiting the scope of the machine provides opportunities for optimization.

Python’s struct module (bytestring-parsing) and numexpr (math) are similar.

4 / 15



Another issue: Uproot and Awkward Array must be independent

Specializes in ROOT file
(de)serialization.

Should know nothing
about ROOT files.

Python-only. Has a compiled C++ part.

Uproot needs a language to express how to deserialize a TBasket, but it doesn’t
need to be a human language.

5 / 15



Another issue: Uproot and Awkward Array must be independent

Specializes in ROOT file
(de)serialization.

Should know nothing
about ROOT files.

Python-only. Has a compiled C++ part.To build
fast VMs.

Uproot needs a language to express how to deserialize a TBasket, but it doesn’t
need to be a human language.

5 / 15



Another issue: Uproot and Awkward Array must be independent

Specializes in ROOT file
(de)serialization.

Should know nothing
about ROOT files.

Python-only. Has a compiled C++ part.

“Here is a TBasket and instructions
for deserializing it.”

“Here is the deserialized array.”

Builds & runs
a fast VM
(in C++).

To build
fast VMs.

Uproot needs a language to express how to deserialize a TBasket, but it doesn’t
need to be a human language.

5 / 15



Another issue: Uproot and Awkward Array must be independent

Specializes in ROOT file
(de)serialization.

Should know nothing
about ROOT files.

Python-only. Has a compiled C++ part.

“Here is a TBasket and instructions
for deserializing it.”

“Here is the deserialized array.”

Builds & runs
a fast VM
(in C++).

To build
fast VMs.

Uproot needs a language to express how to deserialize a TBasket, but it doesn’t
need to be a human language.

5 / 15



So, how about Forth?

I heard about it through CollapseOS,
which targets underpowered but
ubiquitous hardware (Z80 chips).

Forth was invented in 1970 to control
radio astronomy telescopes and was
popular in early PCs because of the
limited hardware.

I First Mac couldn’t run a compiler;
Forth was the only developer
environment to make applications.

Almost no grammar, easy to generate.
The Postscript language is a Forth.

6 / 15



So, how about Forth?

I heard about it through CollapseOS,
which targets underpowered but
ubiquitous hardware (Z80 chips).

Forth was invented in 1970 to control
radio astronomy telescopes and was
popular in early PCs because of the
limited hardware.

I First Mac couldn’t run a compiler;
Forth was the only developer
environment to make applications.

Almost no grammar, easy to generate.
The Postscript language is a Forth.

6 / 15



So, how about Forth?

I heard about it through CollapseOS,
which targets underpowered but
ubiquitous hardware (Z80 chips).

Forth was invented in 1970 to control
radio astronomy telescopes and was
popular in early PCs because of the
limited hardware.

I First Mac couldn’t run a compiler;
Forth was the only developer
environment to make applications.

Almost no grammar, easy to generate.
The Postscript language is a Forth.

6 / 15



What does Forth look like?

There’s a global stack, words like “1” push a number on the stack, and words like
“>” and “if” pop values off the stack, apply operations, and push the result.

Other than control flow like “: . . . ;” and “do . . . loop,” it goes left to right.
7 / 15



AwkwardForth: a dialect of Forth with built-in parsing

Deserializing std::vector<std::vector<float>> from a ROOT TBasket:

8 / 15



Provides a way for Uproot to talk to Awkward Array

I Knowledge of ROOT I/O stays in Uproot.
I Uproot generates an AwkwardForth program as a string (loose coupling).
I Awkward Array builds and runs the machine to get an Awkward Array as output.
I No humans need to read or write the Forth code (except for debugging).

ak.Array

ak.layout.ListOffsetArray32

ak.layout.Index32

TBasket of std::vector<std::vector<float>>

byte offsetslen

offsets 1

len data len data len data ...

ak.layout.ListOffsetArray32

ak.layout.Index32

ak.layout.NumpyArray

offsets 2

content

9 / 15



Performance for ROOT deserialization (higher is better)

D
es

er
ia

liz
at

io
n 

ra
te

 (M
iB

/s
ec

)

1

10

100

1000

float std::vector<float> doubly nested triply jagged

C++ ROOT Python (current Uproot) AwkwardForth (future Uproot) RNTuple

Uncompressed ROOT files → Awkward Arrays (warm cache)

AwkwardForth is several times slower than compiled C++, but on par when data
throughput is included. Compare also Python (current Uproot) and RNTuple.

10 / 15



Performance for Avro deserialization (higher is better)

D
es

er
ia

liz
at

io
n 

ra
te

 (M
iB

/s
ec

)

1

10

100

1000

float arrays of float doubly nested triply nested

fastavro AwkwardForth

Uncompressed Avro files → Awkward Arrays (warm cache)

Since the language can handle any parsing problem, consider other formats like
Avro. The fastavro library is C code, but doesn’t know data types in advance.

11 / 15



Performance for Parquet deserialization (higher is better)

D
es

er
ia

liz
at

io
n 

ra
te

 (M
iB

/s
ec

)

1

10

100

1000

float repeated group of float doubly nested triply nested

pyarrow AwkwardForth

Uncompressed Parquet files → Awkward Arrays (warm cache)

Keep going: consider Parquet. Here, AwkwardForth doesn’t do as well as
pyarrow’s C++ parser because Parquet is a columnar format (like RNTuple).

12 / 15



Parallel processing performance of AwkwardForth and Python

Number of threads

D
es

er
ia

liz
at

io
n 

ra
te

 (M
B

/s
ec

)

0

2500

5000

7500

10000

0 20 40 60 80

AwkwardForth (future Uproot)

Number of threads

D
es

er
ia

liz
at

io
n 

ra
te

 (M
B

/s
ec

)

0

10

20

30

0 20 40 60 80

Python (current Uproot)

AwkwardForth machines are lightweight: we can make one per thread. Python is
inhibited by the GIL. Scales linearly up to RAM access ceiling (5 GB/sec).

13 / 15



Closing remarks

I See the paper for more details, including application to
TypedArrayBuilder.

I A complete Forth implementation is small (< 5k lines of C++)
and fast (5 ns per instruction).

I Particularly useful for communicating algorithms between
software libraries with restricted (sandboxed) runtimes.

I Uproot’s Python-generating routines must now be supplemented
by Forth-generating routines; targeting the end of this year.

14 / 15



Closing remarks

I See the paper for more details, including application to
TypedArrayBuilder.

I A complete Forth implementation is small (< 5k lines of C++)
and fast (5 ns per instruction).

I Particularly useful for communicating algorithms between
software libraries with restricted (sandboxed) runtimes.

I Uproot’s Python-generating routines must now be supplemented
by Forth-generating routines; targeting the end of this year.

14 / 15



Closing remarks

I See the paper for more details, including application to
TypedArrayBuilder.

I A complete Forth implementation is small (< 5k lines of C++)
and fast (5 ns per instruction).

I Particularly useful for communicating algorithms between
software libraries with restricted (sandboxed) runtimes.

I Uproot’s Python-generating routines must now be supplemented
by Forth-generating routines; targeting the end of this year.

14 / 15



Closing remarks

I See the paper for more details, including application to
TypedArrayBuilder.

I A complete Forth implementation is small (< 5k lines of C++)
and fast (5 ns per instruction).

I Particularly useful for communicating algorithms between
software libraries with restricted (sandboxed) runtimes.

I Uproot’s Python-generating routines must now be supplemented
by Forth-generating routines; targeting the end of this year.

14 / 15



https://iris-hep.org/fellow_projects.html

15 / 15

https://iris-hep.org/fellow_projects.html

