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Problem statement
How will we infer the right hypothetical Next 
Standard Model (NSM) from this deluge of 
experimental results? Classical hypothesis 
testing might not anymore do the trick.
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→ The Inverse Problem of 
Particle Physics



  

Our Approach

Instead of testing BSM scenarios one-by-one against the experimental data:
 
● identify dispersed signals in the slew of published LHC analyses
● build candidate “proto-models” from them. 
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● particle content
● masses
● signal strengths [!]
● branching ratios

MCMC-like random walk 
through ”proto-model” space of:



  

Our Approach

an MCMC-like walk

a test statistic

potential
dispersed
signals

A hiscore 
protomodel

Particle
spectra

4https://smodels.github.io/protomodels/videos

Random 
modifications

https://smodels.github.io/protomodels/videos
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The Test Statistic
The test statistic Kc of a protomodel 
BSM for a “complete” set c of 
approximately uncorrelated results 

Priors of the models
used to penalize for
model complexity, 
similar to an AIC.

Joint likelihoods: combining 
“complete” sets of results that 
are assumed to be approximately 
uncorrelated.

We search for proto-models and combinations of results / likelihoods that maximize Kc 
while remaining compatible with all negative results in our database. 



  

Input Data
● likelihood computation based on simplified models results in SModelS database
● vast number of efficiency and upper limit maps from 47 CMS and 48 ATLAS publications.
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● Ideal case: digitized results on HepData
● Sometimes root files on the collaboration’s wiki pages 
● Otherwise extract information from pdf plots

● Since SModelS v2.0.0: binary version of our database on zenodo
● a text-based human-readable version on github

C
M

S
 1

3 
Te

V

A
TL

A
S

 1
3 

Te
V

A
TL

A
S

 8
 T

eV

C
M

S
 8

 T
eV

https://zenodo.org/record/4612420
https://github.com/SModelS
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● Only exclusion lines
If only exclusion lines are given, without upper limits, we can do nothing

● Observed 95% CL upper limits only:
cannot construct likelihood, binary decision “excluded” / “not-excluded” only (“critic”)

● Expected and observed 95% CL upper limits
can construct an approximate likelihood with truncated Gaussian, 
cannot combine topologies, very crude approximation

● Efficiency maps
can construct a likelihood as Gaussian (for the nuisances) * Poissonian  
(for yields), can work per SR, and combine topologies in each SR [*]

● Efficiency maps + correlation matrices
can combine signal regions via multivariate Gaussian * Poissonians

● Efficiency maps + full likelihoods
full realism, correct statistical model
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[*] if efficiency maps are not supplied, we can try to produce them with recasting frameworks

Depending on how much information we have, we can construct approximate 
likelihoods at different levels of “crudeness”



  

Analyses that look at different chunks of LHC data[*] are allowed to be 
combined.

The Combiner
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green: 
approximately 
uncorrelated

 → combinable

red: correlated,
not combinable

White: cannot 
construct a 
likelihood

Signal regions 
within each 
analysis: 
correlated

Analyses from different
runs or experiments
are treated as ~ uncorrelated [*] we only look at signal regions, ignore control regions. Combination = 

     multiplication of likelihoods.



  

Results
We defined a “run” as 50 parallel walkers, making 1,000 steps each. We performed 10 such 
runs on the SModelS database:

All 10 runs introduced a top partner as well as a light quark partner. The cross sections are 
compatible with values expected from the MSSM. The best test statistic was K=6.9.
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Global p-Value
● We sample from the probability models of the results in our database to synthesize 

“Standard Model-only” data.

● Running our algorithm over these “fake” data we can compute a global p-value for the 
Standard Model hypothesis: p(global) ~ 0.19

Because we are confident that this quantity is estimated conservatively, we claim to observe a 
very mild tension with the Standard Model hypothesis. No look-elsewhere effect applies. 10



  

Conclusions

● Given the current LHC results, we think it is necessary to also take a more global 
approach at interpretation.

● We propose an automated, bottom-up approach at inferring the prospective Next 
Standard Model, with “proto-models” – precursor theories – as a next, data-driven step.

● Our prototype presented here builds on ~ 100 CMS and ATLAS simplified models 
results

● About 1,000,000 CPU-cores * hours were spent for this first prototype (run on a large 
“slurm” cluster in Austria)

Theory and model building has arrived at big data and large 
scale computing 

(also lattice QCD, multi-loop/multi-leg calculations, etc etc) 11



  

Backup

12



  

Remember, the test statistic was:

“c” is an index that runs over all “legal” combinations: legal := uncorrelated + “complete” 
(results that can be added have to be added)
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The Test Statistic Revisited

μ denotes an global signal strength multiplier – the production cross sections are free parameters.

It is maximized in the denominator, but its support is restricted such that no negative results ( “exclusions” 
) in the SModelS database are violated (the “critic”).

The priors π are constructed to penalize for model complexity:

which boils down to a criterion that is similar to the Akaike Information Criterion (AIC)



  

The Hiscore Proto-Model

https://smodels.github.io/protomodels/2020_PioneerStudy/real9/index.html

Table 3: the dispersed excess

Table 4: what is driving the “critic”
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Tension!

https://smodels.github.io/protomodels/2020_PioneerStudy/real9/index.html


  

For every legal combination, we define a test statistic K
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The Test Statistic

Eq. 6

π(BSM) is the prior of the BSM model. We use it to “regularize” the model, i.e. impose
the law of parsimony:

Eq. 9

That way, one new particle with one non-trivial branching ratio and two production 
modes is similar to one degree of freedom in Akaike’s information criterion (the sign is 
however flipped, and it’s a likelihood ratio), i.e. the test statistic is roughly equivalent to

An additional particle will have to increase the “(delta-)chi-square” by approximately 
two units.



  

 we allow the machine 
to combine likelihooods.

The Combiner

A combination “c” of analyses is “legal” if the following conditions are met:

● all results are mutually uncorrelated (= ”combinable”)

● if a result can be added, it has to be added (any subset of a 
legal combination is not itself legal)

● combined likelihood:

Fig. 2
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Approximately uncorrelated are analyses that are:

● from different runs, and/or

● from different experiments, and/or

● looking for (clearly) different signatures



  

The Walker takes care of moving in the protomodel space with 
varying dimensionality by performing the following types of
modifications to the protomodel:

● add or remove particles from 
the protomodel

● change the masses of particles
● change the signal strengths of 

production modes 
● change decay channels and 

branching ratios

At each step the test statistic K is computed. An MCMC-like 
procedure[*] is then applied in the sense that the step is reverted 
with a probability of 
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The Walker

if and only if Ki is smaller than Ki-1 

Appendix A.1

* (note however, instead of ratios of 
unnormalized posteriors we have ratios 
of ratios of unnormalized posteriors)



  

We define a “run” as 50 parallel walks, each taking 1000 steps.

We performed 

● 10 runs on the SModelS database (Sec. 5.2)

● 50 runs on fake “Standard Model-like” databases (Sec 5.1)
to be able to determine a global p-value under the SM hypothesis

● 2x10 runs on fake “Signal-like” databases (Sec 5.3)
to show closure of the method
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The Walks



  

Walking Over Fake Standard Model 
Databases

K for one “fake”
background-only 
database.

Density of K 
estimated via a 
simple Kernel 
density 
estimator.

Sec. 5.1, Fig. 6
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● Produced 50 “fake” SModelS databases by sampling background models
● Corresponds to typical LHC results if no new physics is in data
● Determine 50 “fake” K values by running 50 walkers on each of the 50 databases (50 x 

50 walkers in total) → density of K under null SM-only hypothesis



  

Convergence of Method
Are we sure we found the global maximum? When scanning individual protomodel 
parameters, while fixing the others, it seems so:

Fig. 12 
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Mutual (In-)Compatibility

68% Bayesian credibility regions of the particle masses, fixating all other parameters.

● very little handle on the masses

● results suffer from the fact that the efficiency and upper limit maps are limited in the mass ranges (the 
dashed lines are the limits of the maps). → try and fix in next iteration.

● tension between builder and critic – will understand this better with future, improved, efficiency maps

● Aim for full posteriors in next iteration of this effort
21

Fig. 14 



  

p-Values per Signal Region
Fig. 7
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● p-values for signal regions in SModelS database
● errors on background estimated modelled as (“single enveloping”) Gaussian
● filtered out regions with expected number  of the events < 3.5
● blue area is real data, red line is “fake” BG-only simulated databases
● results compatible with idea that BG errors are conservative, see also arXiv:1410.2270
● slighty more excesses (p→0) than underfluctuations (p→1)

→ pglobal is most likely conservative!

https://arxiv.org/abs/1410.2270


  

Walking Over Databases With Fake 
Signals

To show closure of our method, we inject the winning protomodel as a signal in fake 
databases, and see if the algorithm can reconstruct the injected signal.

No sampling of the models for the SRs, i.e. 
observed events := expected SM + 
expected signal events

Sampling turned on

23

Fig. 11 Fig. 10

Sec 5.3

Technical closure test Physics closure test



  

Future Improvements
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Improvements of the SModelS database:

● add latest full run-2 CMS and ATLAS publications (Moriond!)
● produce efficiency maps for existing results
● enlarge mass range of older efficiency maps

Improvements in speed:

● learn the SModelS database
● make everything differentiable

Improvements in procedure:

● improve the “analyses correlation matrix”, automate the determination
● ponder relationship between proto-models and effective field theories
● connect proto-models with complete theories



  

If we had gradients we could perform gradient descent to find the best model, and we could use e.g. 
the Fisher information to infer the error on its parameters (or, alternatively we can then MCMC-
sample).

Needless to say, the data pipeline sketched above is not the only feasible one. Differentiability however would 
be a helpful tool for all possible data pipelines. A similar rationale would apply also to EFTs, Wilson coefficients 
and data from measurements.

described as likelihoods L that are 
differentiable with respect to the 
yields y

i

we have started an effort 
to make SModelS 
differentiable w.r.t SMS 
parameters p

j
, by learning 

our entire database: 

for individual candidates we can make this 
differentiable w.r.t fundamental parameters 
Θ

l
, via neural networks, with efforts similar to 

DeepXS, or “TheoryGANs” [*]:

that’s just a sum of
simplified models → 
differentiable!

https://arxiv.org/abs/1810.08312

. . .
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Why Differentiable?

 →Differentiable Inductive Reasoning!

https://arxiv.org/abs/1810.08312
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Likelihoods

See Tables 6 and 8
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CMS 8 TeV

CMS 13 TeV

Color coding same as in previous slide
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Likelihoods

See Tables 5 and 8
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CMS 13 TeV

ATLAS 13 TeV

Color coding same as in previous slide



  

Likelihoods
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Limit without combination of 
signal regions

Limit with combination of 
signal regions

 CMS-NOTE-2017-001

arXiv:1809.05548 

JHEP 04 (2019) 064

https://cds.cern.ch/record/2242860
https://arxiv.org/abs/1809.05548
https://link.springer.com/article/10.1007/JHEP04(2019)064


  

SModelS – a decomposer
 and a database

We decompose full theories into SMS topologies, and match them against our database.
Depending on how much information we have access to, we can do different things.
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SModelS – a decomposer
 and a database

efficiency maps with simplified likelihoods

 CMS-NOTE-2017-001

Simplified likelihood, v2: a skewness term is added 
to allow for asymmetrical distributions.

arXiv:1809.05548 

Simplified likelihood, v1: All nuisances summarized in a single “all 
enveloping” multivariate Gaussian that “connects” all signal regions (which 
are Poissonian counting variables):

Around 2017/18, CMS started to publish simplified likelihoods for a handful of analyses,
making it possible for outsiders to combine signal regions. Until then, SModelS has never
been able to combine SRs.

JHEP 04 (2019) 064 30

https://cds.cern.ch/record/2242860
https://arxiv.org/abs/1809.05548


  

proto-models
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