

Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers

Jeremy Hewes, for the Exa.TrkX collaboration vCHEP 2021 19th May 2021

Graph neural networks

- Investigating the use of Graph Neural Networks (GNNs) as an alternative to Convolutional Neural Networks (CNNs).
- Describe information structure as a graph represented by nodes and edges.
- Building on promising results from the HEP.TrkX collaboration using such methods for track reconstruction in the LHC world (<u>arxiv:2103.06995</u>).

Liquid Argon TPCs

- Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily utilised detector technology in neutrino physics.
 - At FNAL: MicroBooNE, Icarus, SBND.
 - Future: DUNE (70kT LArTPC deep underground, plus near detector).
- Charged particles ionize liquid argon as they travel.
- Ionisation electrons drift due to HV electrode field, and are collected by anode wires.
- Wire spacing ~3mm produce high-resolution images.

Simulation

- Physics problem: reconstruct neutrino interactions in a LArTPC by classifying detector hits and grouping them into objects.
- Use CCQE beam neutrino interactions
 - Few-GeV energy neutrinos.
 - Neutrinos travel along beam direction.
 - Typically "clean" interactions primary lepton (e,µ) and minimal hadronic activity.
- Minimal sim/reco chain:
 - GENIE/Geant4 simulation.
 - Detector simulation.
 - Wire deconvolution & hit finding.

Graph construction

- Potential graph edges formed for hits in close proximity (5 wires & 50 time ticks).
- Potential edges then classified as hadronic, muon, shower or false as an objective for learning.

- Edges are classified as false if the two hits were not produced by the same particle in the underlying simulation.
- **Muon** edges are hits produced by the primary muon, **shower** edges by the primary electron, and **hadronic** edges are the remainder.

Multihead attention message-passing network

- Build on Exa.TrkX binary edge classifier, to classify graph edges to determine the relationships between detector hits.
 - Pass messages + form node features independently for each class.
 - Produce 4 edge attention scores on each edge.
 - Take the softmax of those edges with each iteration.
 - If an edge is strongly shower-like, the track-like classes will be weighted down accordingly.

2D edge classification network

- Current iteration achieves 84% accuracy in classifying graph edges.
 - · Performs well on showers, but still room for improvement in tracks.
 - See <u>arxiv:2103.06233</u>.

2D edge classification network

- Current iteration achieves 84% accuracy in classifying graph edges.
 - · Performs well on showers, but still room for improvement in tracks.
 - See <u>arxiv:2103.06233</u>.

2D edge classification network

- Current iteration achieves 84% accuracy in classifying graph edges.
 - Performs well on showers, but still room for improvement in tracks.
 - See <u>arxiv:2103.06233</u>.

Future plans

- This first version of our model performs well at reconstructing particle types in simulated LArTPC neutrino interactions.
- Edge classification works well for layered LHC detectors, but less well-suited to the problem of clustering hits into dense objects.
 - Need a scheme to collapse disparate classified edges into objects.
 - Incorporate concepts from instance segmentation for object-finding.
- Move beyond simple CCQE interactions to more complex event topologies
 - More sophisticated definitions of ground truth.
 - More granular taxonomy: Michel electrons, e/γ showers, δ rays, π , κ .
- 3D-aware model which passes information between planes to ensure 2D representations are consistent with each other.

Backup

Start with graph **node features** (hit position, amplitude, RMS, etc)

Perform convolutions on edge scores to form a set of **class-wise probabilities**

Propagate features from each node to adjacent nodes, weighted by edge score

Perform convolutions to form new **node features**

Repeating this process causes information to spread across the graph

