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@ cINCINNAT

Graph neural networks

Investigating the use of Graph Neural Networks (GNNs) as an alternative to
Convolutional Neural Networks (CNNs).

Describe information structure as a graph represented by

and edges.

Building on promising results from the HEP.TrkX collaboration using such
methods for track reconstruction in the LHC world (arxiv:2103.06995).
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https://arxiv.org/abs/2103.06995

@ cINCINNAT

Liquid Argon TPCs

- Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily

utilised detector techno

- At FNAL: MicroBooN

ogy in neutrino physics.
E, Icarus, SBND.

- Future: DUNE (70kT LArTPC deep underground, plus near detector).

- Charged particles ionize liquid

argon as they travel.

lonisation electrons drift due to

HV electrode field, and

collected by anode wires.

- Wire spacing ~3mm — produce
high-resolution images.
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Simulation

Physics problem: reconstruct neutrino

interactions in a LArTPC by classifying A
detector hits and grouping them into objects. N
%
MR (%
\‘ 9
Use CCQE beam neutrino interactions "
: “?o
Few-GeV energy neutrinos. Nuclous |

Neutrinos travel along beam direction.

- Typically “clean” interactions — primary lepton
(e,y) and minimal hadronic activity.

Minimal sim/reco chain:
- GENIE/Geant4 simulation.

Detector simulation.

- Wire deconvolution & hit finding.
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Graph construction

Potential graph edges formed for hits in close proximity (5 wires & 50 time
ticks).

Potential edges then classified as hadronic, muon, shower or as an
objective for learning.

- - Edges are classified as

_ | if the two hits were
SSSSS | : not produced by the

- same particle in the
underlying simulation.

00000

- Muon edges are hits
produced by the primary
muon, shower edges by
the primary electron, and
hadronic edges are the
remainder.

00000
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@ CINGINNATI
tihead attention message-passing network

d on Exa.TrkX binary edge classifier, to classify graph edges to determine the

relationships between detector hits.

Pass messages + form node features independently for each class.
Produce 4 edge attention scores on each edge.
Take the softmax of those edges with each iteration.

If an edge is strongly shower-like, the track-like classes will be weighted down accordingly.
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D edge classification network

Current iteration achieves 84% accuracy in classifying graph edges.
Performs well on showers, but still room for improvement in tracks.
See arxiv:2103.06233.

false hower o haronic hadronic, muon, shower,
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D edge classification network

Current iteration achieves 84% accuracy in classifying graph edges.

Performs well on showers, but still room for improvement in tracks.
See arxiv:2103.06233.
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D edge classification network

Current iteration achieves 84% accuracy in classifying graph edges.

Performs well on showers, but still room for improvement in tracks.
See arxiv:2103.06233.
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Future plans

- This first version of our model performs well at reconstructing particle types in
simulated LArTPC neutrino interactions.

- Edge classification works well for layered LHC detectors, but less well-suited to the
problem of clustering hits into dense objects.

- Need a scheme to collapse disparate classified edges into objects.

- Incorporate concepts from instance segmentation for object-finding.

- Move beyond simple CCQE interactions to more complex event topologies

- More sophisticated definitions of ground truth.

- More granular taxonomy: Michel electrons, e/y showers, 6 rays, 11, K.

- 3D-aware model which passes information between planes to ensure 2D
representations are consistent with each other.
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Message-passing network
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Start with graph node features

‘ (hit position, amplitude,
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Message-passing network
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and outgoing node

\_/ Form edge features by
L\ pulllng in features from incoming
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Message-passing network

Perform convolutions on
edge scores to form a set
of class-wise probabilities
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Message-passing network
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Propagate features from each
node to adjacent nodes,
weighted by edge score

in LArTPCs - J Hewes — vCHEP 2021
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Message-passing network

Perform convolutions
‘ to form new node features
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration O
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration 1
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration 2
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