

Intelligent Compression for Synchrotron Radiation Source Image

Speaker: Fu Shiyuan

Institute of High Energy Physics

University of Chinese Academy of Sciences

Motivation

- •CHEP
- Synchrotron radiation source (SRS) facilities will generate a huge mount of data.
 - The High Energy Photon Source (HEPS) is one of the world's brightest fourth-generation synchrotron radiation facilities.
 - The HEPS beamlines in the first-stage project are estimated to produce an average of 200TB raw data per day. (150PB/year).
 - The SRS images generated by the hard X-ray imaging beamline account for the majority, which require the largest capacity of storage and bandwidth.

Challenge

- •CHEP
- The data produced by HEPS will not only increase continuously but also require long-term preservation.
 - A simple expansion of storage and bandwidth cannot solve the problem fundamentally, and it requires a lot of research funding.
- To ensure the scientific potential, data cannot be lost during preservation and transmission.

Image lossless compression

SRS Image

- •CHEP
- The SRS images is the sequence of projections.
 - Different angles of **one** sample
 - High resolution, high frame rate and high contrast
 - Pixel value range: 0~65535
 - Image size: 2K×2K → 10K×10K(future)
 - Image number : thousands → tens of thousands(future)

Related work

- •CHEP
- Compression Ratio (CR) = (Compressed size) / (Original size)
 - Indicate how much storage capacity is occupied after compression
- Traditional lossless compression methods can only save up to 30% in size.

• CR ≈ 70%

Architecture

•CHE

- STEP1. Image Difference
 - Remove linear relationship
- STEP2. Mapping
 - Narrow the range of pixel-value distribution
- STEP3. Modelling & Predicting
 - Learn nonlinear relationship among pixels
 - Predict the probability distribution of pixel-value

- STEP4. Arithmetic Coding
 - Get the final compressed data stream

Image Difference

- Subtract the pixel value of the previous image from the current image.
 - Highlight different parts
 - Reduce the noise information
 - Pixel values are more concentrated

Pixel value distribution

Mapping

- •CHEP
- Narrow the range of pixel-value distribution by saving a small portion (~2%) of uncompressed data.
 - Narrow the range of values.
 - Ensure that the process is reversible and no information is lost.

Modeling

- Model
 - Based on Deepzip
 - Output the probability distribution of the pixel-value
 - Compressed by arithmetic coding
 - Save the model for lossless compression
 - Model architecture
 - LSTM for example

Modeling - Input & Output

•CHEP

- Train the model for prediction
 - Predict the probability distribution of pixel-value at the red position at time T using the first K (K=3 for example) images at the same position.
- Input
 - The sequence is the first K pixel values at the same position in chronological order.
- Output
 - Probability distribution of red position pixel-value at time T.
 - Only the probability corresponding to the true value is 1, others are 0.

Test

- Dataset:
 - From Shanghai Synchrotron Radiation Facility
 - 1622(frames)×1200(height)×2048(width)
- Environment
 - Python 3.6
 - GPU Tesla V100
 - Tensorflow (gpu) 1.8
- Train the model
 - K=8
 - 5 epoch
 - Loss function: Cross Entropy Loss Function

Result

- $CR = 44.77\% (20\%\uparrow)$
 - Compared with common compression methods, our method can save more than 20% capacity of storage and bandwidth.
 - Need more than 2 minutes to compress one image.

Athematic coding: ~140s

Summary & Next step

- Summary
 - We proposed an intelligent compression for SRS image.
 - Save more than 20% resource compared comman image compression methods.
 - Need more time during compression and decompression.

- Next step
 - Save compression and decompression time through parallel computing.
 - Try more models (TCN/Transformer) to get more accurate predictions.

Thanks!