Recent Improvements to the ATLAS
Offline Data Quality Monitoring System

Peter Onyisi

CHEP, 20 May 2021

TEXAS ATLAS

The University of Texas at Austin EXPERIMENT

Overview

* ATLAS offline data quality Conations EREEER = —
monitoring (DQM) chain is used i
to sign off data for good run lists |
and to provide feedback to et —r
optimize operation of the gy £
detector T *

+ LHC shutdowns provide i :

opportunity to update system

I i > Time

~minutes ~48 hours ~1 week (As needed)

used in parallel with online chain which provides immediate
(but limited) feedback in the control room; offline DQM
allows comprehensive study of all recorded data

* Migration to multithreaded reconstruction :
_ _ this talk
* New histogram postprocessing
* Versioned reference updates for automatic checks

- 1mprove responsiveness while keeping reproducibility

* Improved automatic check storage formats & disk layouts

- halve file size with no difference in stored content by using better ROOT
objects

- reduce inode pressure by combining files in tar archives

* User interface improvements
- dynamic interaction with plots in browser using JSSROOT

All discussed in accompanying paper; focus on first two here

Multithreaded Histogramming

* Performance of detectors & calibrations is monitored with histograms created
in the reconstruction workflow

- 0(10%) of data promptly processed in the “express” data stream, then full “Main” data
48 hours after end of run

* Reconstruction has been migrated to multithreaded “AthenaMT” in order to
improve required memory/CPU core ratio
- histograms need to be shared between threads to achieve good memory scaling
* MT-safe histogramming is tricky (and requires cooperation between all
units): centralize hard parts

- THistSvc design does not provide sufficient MT safety in histogram creation &
management operations (MT-safe filling is “simple” part)

- would like to avoid global ROOT locks

- approach: programmers no longer touch raw histograms; all operations are handed in
core libraries

Programmer Interface

o Hlstog’rams deﬁned ln Athena]Ob Python group.defineHistogram(“detstates_idx,detstates;eventflag_summary lowStat",
title="Event Flag Summary",
. type="TH2I',
Conﬁgurathn xﬁﬁs:EuentInFo.nDetsﬂ,
xmin=-8.5,
- extensive API to simplify tasks, e.g. for defining Sy TDEeS. 3,
arrays of histograms for different detector regions e
. xlabels=["Pixel", "SCT", "TRT", "LAr", "Tile",
- TH*, TProfile, TGraph, TEfficiency, TTree “Muon”, "Forwarddet”, "Core’,
"Barlclkg:crund_, "Lmlu B ,:!.\11 1s
supported: can also support other backends } ylabels=["0K", "Warning”, "Error”]

although not used at present
- histograms defined by variable names to be

plotted
* HIStogramS ﬁ]']'ed 11 C++ event loop bY std::vector<int> detstatevec(xAOD::EventIntfo::nDets+l);
- - std::vector<int>» detstatevec_idx(xAOD::EventInfo::nDets+1);
pl’OVldlng Val’lable names & data tO std::iota(detstatevec_idx.begin(), detstatevec_idx.end(), @);
1 ; to detstates = Collection("detstates”, detstat ;
hlStOgrammlng tOO]' ::tg dgtztgtgg_idxi Egligsiios(Edgtsiatesisxﬂ,ezggtatevec_idx};
- actual fill of histograms occurs in centralized code // fill vectors
that determlnes What hlStogramS can be ﬁlled aetstatevec[m@[}::EventIn'Fo: :nDets] = worststate;

given provided data fill({group, detstates, detstates_idx);

Lessons from MT Histogramming

Design choice: every fill() call requires a (potentially expensive) lookup
of what histograms to fill given provided variables

- trigger and offline monitoring have different patterns — optimization of core
code needs to handle both cases

- encourage developers to use “vectorized” interfaces that fill many quantities at
once, e.g. energy for all calorimeter cells in one call. “Cutmask” variables can
be used to select a subset of a container for filling

- new algorithms generally need a performance review to identify bottlenecks
Try to minimize memory motion of data values

- avoid intermediate representations of data when possible
As always, lots of subtle places for race conditions to creep in

- e.g. rebooking of time-dependent histograms in multiple threads

Histogram Postprocessing

. _ RAW RAW RAW
Histogram production has several phases file file file

- an accumulation step with commuting & reversible operations (usually L L L
addition to a bin of an array) in a single reconstruction job

- merging of results from multiple jobs Reco Reco Reco
- optional “postprocessing” (e.g. make a new plot showing mean residuals)

* Similar to map-reduce (except that often reduce is “trivial” \ L /
histogram addition)

: : : Merge
* Postprocessed histograms are in general not possible to merge J
between jobs coherently i
- e.g. efficiency plots really need to keep numerator and denominator
separate until final plot making, which is why ROOT now has TEfficiency Postprocessing
* In past, used to allow C++ postprocessing inside Athena
- this isn't compatible with the new monitoring architecture (user
algorithms have no access to the histogram data) so is now forbidden Final histogram file

- 1ntroduce a new system to handle postprocessing

Postprocessing Engine

* Introduce generic framework for operations on histograms: histgrinder

- complete factorization of histogram processing logic from access: handled via I/0
plugins (ROOT file, ATLAS online histogramming system, Athena THistSvc, ...)

- framework does not require any specific histogram technology
- processing algorithms written in Python (but can use cppyy for speed)

- pattern matching to simplify processing of similar histograms (e.g. different
detector layers/regions)

- for online operations: accepts histograms as they arrive & updates outputs
 ATLAS implementations:

- offline: ROOT file — ROOT file

- online: distributed online histogram (OH) system — OH

- Athena piggyback for online: THistSvc — THistSvc in parallel to the reco job
Allows us to reuse postprocessing code in multiple environments

https://github.com/ponyisi/histogram_postprocessing/tree/master/histgrinder

Example Histgrinder Configuration

Regex groups which make Regex group which specifies
distinct output histograms multiple inputs to function

Input: [LAFIcﬂverageprFPartltlﬂnfRAw CoverSampling

\ \\\\\\‘k \\¥
M

Output: ['LAr/Coverage/perPartition/CoverSamplingd

Function: LArMonitoring.LArMonTransforms. flllwlthﬁaxtuverage

Parameters: { isFtSlotPlot : False }
Description: LAr Coverage FillWithMax
Python function to call

Additional configuration for function

Same YAML configuration & user code used for offline and online applications;
only difference is I/0 plugins

* Multiple upgrades to ATLAS offline DQM chain in progress
* Focused on two developments:

- multithread-safe histogramming in AthenaMT
- new streaming histogram postprocessing framework

* Both deployed and ready for data taking

10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

