
Recent Improvements to the ATLAS
Offline Data Quality Monitoring System

Peter Onyisi

CHEP, 20 May 2021

2

Overview
● ATLAS offline data quality

monitoring (DQM) chain is used
to sign off data for good run lists
and to provide feedback to
optimize operation of the
detector

● LHC shutdowns provide
opportunity to update system

used in parallel with online chain which provides immediate
(but limited) feedback in the control room; offline DQM
allows comprehensive study of all recorded data

3

Projects
● Migration to multithreaded reconstruction
● New histogram postprocessing
● Versioned reference updates for automatic checks

– improve responsiveness while keeping reproducibility
● Improved automatic check storage formats & disk layouts

– halve file size with no difference in stored content by using better ROOT
objects

– reduce inode pressure by combining files in tar archives
● User interface improvements

– dynamic interaction with plots in browser using JSROOT

All discussed in accompanying paper; focus on first two here

this talk

4

Multithreaded Histogramming
● Performance of detectors & calibrations is monitored with histograms created

in the reconstruction workflow
– O(10%) of data promptly processed in the “express” data stream, then full “Main” data

48 hours after end of run
● Reconstruction has been migrated to multithreaded “AthenaMT” in order to

improve required memory/CPU core ratio
– histograms need to be shared between threads to achieve good memory scaling

● MT-safe histogramming is tricky (and requires cooperation between all
units): centralize hard parts

– THistSvc design does not provide sufficient MT safety in histogram creation &
management operations (MT-safe filling is “simple” part)

– would like to avoid global ROOT locks
– approach: programmers no longer touch raw histograms; all operations are handed in

core libraries

5

Programmer Interface
● Histograms defined in Athena job Python

configuration
– extensive API to simplify tasks, e.g. for defining

arrays of histograms for different detector regions
– TH*, TProfile, TGraph, TEfficiency, TTree

supported: can also support other backends
although not used at present

– histograms defined by variable names to be
plotted

● Histograms filled in C++ event loop by
providing variable names & data to
histogramming tool

– actual fill of histograms occurs in centralized code
that determines what histograms can be filled
given provided data

// fill vectors

6

Lessons from MT Histogramming
● Design choice: every fill() call requires a (potentially expensive) lookup

of what histograms to fill given provided variables
– trigger and offline monitoring have different patterns optimization of core →

code needs to handle both cases
– encourage developers to use “vectorized” interfaces that fill many quantities at

once, e.g. energy for all calorimeter cells in one call. “Cutmask” variables can
be used to select a subset of a container for filling

– new algorithms generally need a performance review to identify bottlenecks
● Try to minimize memory motion of data values

– avoid intermediate representations of data when possible
● As always, lots of subtle places for race conditions to creep in

– e.g. rebooking of time-dependent histograms in multiple threads

7

Histogram Postprocessing
● Histogram production has several phases

– an accumulation step with commuting & reversible operations (usually
addition to a bin of an array) in a single reconstruction job

– merging of results from multiple jobs
– optional “postprocessing” (e.g. make a new plot showing mean residuals)

● Similar to map-reduce (except that often reduce is “trivial”
histogram addition)

● Postprocessed histograms are in general not possible to merge
between jobs coherently

– e.g. efficiency plots really need to keep numerator and denominator
separate until final plot making, which is why ROOT now has TEfficiency

● In past, used to allow C++ postprocessing inside Athena
– this isn’t compatible with the new monitoring architecture (user

algorithms have no access to the histogram data) so is now forbidden
– introduce a new system to handle postprocessing

Reco Reco Reco

RAW
file

Merge

Postprocessing

RAW
file

RAW
file

Final histogram file

8

Postprocessing Engine
● Introduce generic framework for operations on histograms: histgrinder

– complete factorization of histogram processing logic from access: handled via I/O
plugins (ROOT file, ATLAS online histogramming system, Athena THistSvc, ...)

– framework does not require any specific histogram technology
– processing algorithms written in Python (but can use cppyy for speed)
– pattern matching to simplify processing of similar histograms (e.g. different

detector layers/regions)
– for online operations: accepts histograms as they arrive & updates outputs

● ATLAS implementations:
– offline: ROOT file ROOT file→

– online: distributed online histogram (OH) system OH→

– Athena piggyback for online: THistSvc THistSvc in parallel to the reco job→

Allows us to reuse postprocessing code in multiple environments

https://github.com/ponyisi/histogram_postprocessing/tree/master/histgrinder

9

Example Histgrinder Configuration

Python function to call

Additional configuration for function

Same YAML configuration & user code used for offline and online applications;
only difference is I/O plugins

Regex groups which make
distinct output histograms

Regex group which specifies
multiple inputs to function

10

Summary
● Multiple upgrades to ATLAS offline DQM chain in progress
● Focused on two developments:

– multithread-safe histogramming in AthenaMT
– new streaming histogram postprocessing framework

● Both deployed and ready for data taking

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

