
Kyle Cranmer1, Alexander Held1

1 New York University

25th International Conference on Computing in High Energy & Nuclear Physics
https://indico.cern.ch/event/948465/

May 19, 2021

Building and steering template fits with

1

This work was supported by the U.S. National Science Foundation (NSF) Cooperative Agreement OAC-1836650 (IRIS-HEP).

https://indico.cern.ch/event/948465/

• Binned template fits are widely used for statistical inference at the LHC and beyond

• HistFactory is a statistical model for binned template fits

‣ prescription for constructing probability density functions (pdfs) from small set of building blocks

‣models can be serialized to workspaces

‣ covers wide range of use cases, extensively used in ATLAS

• cabinetry is a Python library for constructing and operating HistFactory models

❯pip install cabinetry

‣uses pyhf (HistFactory model in Python)

‣ integrates seamlessly with the flourishing Python HEP ecosystem

‣modular design: drop in and out of cabinetry whenever needed

Introduction

the HistFactory pdf (pyhf docs)

Alexander Held 2

https://cds.cern.ch/record/1456844
https://github.com/alexander-held/cabinetry/
https://pyhf.readthedocs.io/
https://pyhf.readthedocs.io/en/latest/intro.html

Working with cabinetry
• cabinetry is used to

‣design and construct statistical models (workspaces) from instructions in declarative configuration

- analyzers specify selections for signal/control regions, (Monte Carlo) samples, systematic uncertainties

- cabinetry steers creation of template histograms (region ⊗ sample ⊗ systematic)

- cabinetry produces HistFactory workspaces (serialized fit model)

‣ perform statistical inference

- including diagnostics and visualization tools to study and disseminate results

3Alexander Held

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

cabinetry steering execution

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

Designing a statistical model
• declarative configuration (JSON/YAML/dictionary) specifies everything needed to build a workspace

‣ can concisely capture complex region ⊗ sample ⊗ systematic structure

4Alexander Held

general settings

list of phase space
regions (channels)

list of
samples (MC/data)

list of
systematic

uncertainties

list of
normalization

factors

• workspaces construction happens in three steps:

1) create template histograms from columnar data following config instructions

- backends execute instructions (default: uproot, experimental: coffea)

2) optional: apply post-processing to templates (e.g. smoothing)

3) assemble temples into workspace (JSON file)

• utilities provided to visualize and debug fit model

• possible to provide custom code for template creation

fit to

data

Template histograms and workspace building
visualization of individual

template histograms

fit model visualization

event yield table

synthetic examples used for these slidesAlexander Held 5

https://uproot.readthedocs.io/
https://coffeateam.github.io/coffea/

• implementations for all common inference tasks exist

‣ includes associated visualizations

‣ results validated against ROOT-based implementation

Statistical inference

upper parameter limits

nuisance parameter pulls

nuisance parameter impacts

parameter correlations

likelihood scans

discovery significance

synthetic examples used for these slidesAlexander Held 6

example: to produce both plots below, use 3 lines of Python to call the cabinetry API
or single CLI instruction: $ cabinetry fit --pulls --corrmat ws.json

Working with an unknown workspace

fit

Alexander Held 7

(workspace contains
additional channels not

shown here)

• pick a workspace from HEPData: 10.17182/hepdata.89408.v3 (analysis: JHEP 12 (2019) 060)

‣ download with pyhf, start performing inference and studying fit model with cabinetry in seconds

• try it out: run on Binder!

https://doi.org/10.17182/hepdata.89408.v3
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-31/
https://mybinder.org/v2/gh/cabinetry/cabinetry-tutorials/master?filepath=HEPData_workspace.ipynb

Future directions

• cabinetry is being actively developed

‣ everything shown in these slides (and more) is available: try it out on Binder!

• next steps and goals:

‣ short term: improved visualization API for simplified figure handling and customization

‣more generic handling of templates related to interpolation

- include infrastructure to support generic systematics beyond HistFactory “up/down” types

‣ longer term: support end-to-end automatic differentiation

- optimize analysis selection and design via gradient descent, see neos for an example

‣ your ideas?

‣ your contributions and thoughts are welcome!

8Alexander Held

tutorial repository

https://mybinder.org/v2/gh/cabinetry/cabinetry-tutorials/master
https://github.com/gradhep/neos
https://github.com/cabinetry/cabinetry-tutorials

Summary

• cabinetry is

‣ a modular, Python-based library to create and operate statistical models for inference with template fits

‣ leveraging the power of many libraries in a growing Python HEP ecosystem

‣ openly developed on GitHub

‣ available to try it out yourself on Binder!

9Alexander Held

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

cabinetry steering execution

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

https://github.com/alexander-held/cabinetry/
https://mybinder.org/v2/gh/cabinetry/cabinetry-tutorials/master?filepath=example.ipynb

Backup

10

Links to cabinetry
• cabinetry:

‣can be installed via $ pip install cabinetry

- cabinetry[contrib] for extra features

‣ is open source and publicly developed

- developed on GitHub

- published on PyPI

- documented on Read the Docs

- part of IRIS-HEP

11Alexander Held

cabinetry on PyPI

documentation on Read the Docscabinetry on GitHub

https://github.com/alexander-held/cabinetry/
https://pypi.org/project/cabinetry/
https://cabinetry.readthedocs.io/
https://iris-hep.org/projects/cabinetry.html
https://pypi.org/project/cabinetry/
https://cabinetry.readthedocs.io/
https://github.com/alexander-held/cabinetry/

• HistFactory is the standard model used in ATLAS for binned statistical analysis

‣ pyhf is a python implementation of this model

‣ the HistFactory model specifies how to construct the likelihood function

‣ cabinetry turns a declarative specification about cuts, systematics etc. into a statistical model

‣ pyhf turns that model into a likelihood function

Statistical analysis: the HistFactory model

12Alexander Held

prediction (sum of samples)
constrained parameters

controlling systematic variations

https://cds.cern.ch/record/1456844/
https://pyhf.readthedocs.io/
https://github.com/alexander-held/cabinetry/

cabinetry within the broader ecosystem

13Alexander Held

interface generally well defined

possibilities for specifying cuts / translating between languages

hep_tables
not explored yet

fitting-as-a-service
to be explored

synergies with hist

https://indico.cern.ch/event/960587/contributions/4070323/

Why cabinetry?
• why cabinetry?

‣ pure Python and no ROOT dependency, fills gap in Python ecosystem

- made possible by uproot, awkward-array, boost-histogram , pyhf

‣modular approach: avoid lock-in

- benefit from growing columnar analysis ecosystem (coffea etc.)

‣ openly developed, fully available to broader community beyond a specific experiment

‣ follow good practices with extensive automated testing (see coverage)

‣ chance to take different design decisions informed by years of experience with existing tools

- in particular: declarative approach, but allow custom code injection at core steps in the workflow

• why the name?

‣ a workspace is like a cabinet — it organizes data into many bins (like drawers in a cabinet)

‣ the building of these “workspace cabinets” is cabinetry

14Alexander Held

https://uproot.readthedocs.io/
https://awkward-array.org/
https://boost-histogram.readthedocs.io/
https://pyhf.readthedocs.io/
https://coffeateam.github.io/coffea/
https://app.codecov.io/gh/alexander-held/cabinetry

Design considerations

15

Design considerations (1)

• modularity

‣ functionality is factorized wherever possible

- use the pieces you want / need, without needing to commit to only using cabinetry

‣no interplay between workspace building and fitting

- use fitting / debugging utilities for any HistFactory workspace, including ROOT version (convert with pyhf)

‣modularity makes it easier to interface new technologies / libraries that may appear in the future

• usability as a library

‣ cabinetry can be used as a framework (e.g. via the CLI), but more control is possible by using it as a library

- control program flow by selecting what function to call when, and modify parameters as needed

16Alexander Held

• workspace building

‣ core library implements logic to generate instructions for histogram building

‣histogram building is factorized (see cabinetry.contrib)

‣ can use custom code called by cabinetry for histogram building

- avoids re-implementation of logic for histogram building and workspace creation

• fitting

‣ lightweight containers storing results (example: FitResults)

‣ easy to convert to other formats as needed, or serialize to file as JSON/YAML/ROOT…

Design considerations (2)

17Alexander Held

example:
results from a MLE fit

https://cabinetry.readthedocs.io/en/latest/api.html#module-cabinetry.contrib
https://cabinetry.readthedocs.io/en/latest/api.html#cabinetry.fit.FitResults

Configuration

18

• configuration is built from blocks of settings, a JSON schema describes this structure

• General settings used for global parameters

Configuration structure

19Alexander Held

general settings

list of phase space
regions (channels)

list of
samples (MC/data)

list of
systematic

uncertainties

list of
normalization

factors

https://cabinetry.readthedocs.io/en/latest/config.html

• specify a list of phase space regions via Regions

Regions

event selection requirements

variable to bin in

binning to use in histograms

Alexander Held 20

• list all samples (Monte Carlo and data) via Samples

Samples

the paths combine to form the path per sample
(can also use RegionPaths in there)

sample-specific settings

Alexander Held 21

• list instructions for systematic uncertainties via Systematics and define normalization factors with NormFactors

Systematics & normalization factors

defines a HistFactory NormSys

use same structure for up/down templates

settings specified for a template override
nominal settings used for sample

NormSys and HistoSys

which samples to act on

Alexander Held 22

Python API* and CLI
* only showing high-level API here, see e.g. model_utils for lower level utilities

23

https://cabinetry.readthedocs.io/en/latest/api.html#module-cabinetry.model_utils

The Python API - from config to fit results (1)

create template histograms
from config instructions

apply optional post-
processing, e.g. smoothing

visualize all templates:
useful debugging utility

create a HistFactory
workspace

24Alexander Held

The Python API - from config to fit results (2)

• cabinetry produces all instructions for

building template histograms

‣histograms produced by backend (e.g.

with uproot), called by cabinetry

‣ can inject custom code, which cabinetry

will call for histogram building instead

• custom histogramming code allows generation

of templates from arbitrarily complex rules

25Alexander Held

The Python API - from config to fit results (3)

direct access to pdf and data
(plus auxiliary data)

visualizations: see
following slides

maximum likelihood fit

nuisance parameters
ranked by impact

• some inference examples with cabinetry:

26Alexander Held

• users might want to build histograms in ways that cannot easily be supported

• cabinetry provides a decorator for user-provided functions to build histograms that match a pattern

Template overrides

27Alexander Held

use function for samples
with name Data
(wildcards supported)

user-provided function
returns histogram

Command line interface

• a command line interface exists for model building and inference

‣ less control over execution, more immediate

‣useful to quickly debug unknown workspaces

‣ documentation: command line interface

28Alexander Held

goodness-of-fit via saturated model

https://cabinetry.readthedocs.io/en/latest/cli.html
http://www.physics.ucla.edu/~cousins/stats/cousins_saturated.pdf

