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• Binned template fits are widely used for statistical inference at the LHC and beyond 

• HistFactory is a statistical model for binned template fits 

‣ prescription for constructing probability density functions (pdfs) from small set of building blocks 

‣models can be serialized to workspaces 

‣ covers wide range of use cases, extensively used in ATLAS 

• cabinetry is a Python library for constructing and operating HistFactory models 

❯pip install cabinetry 

‣uses pyhf (HistFactory model in Python) 

‣ integrates seamlessly with the flourishing Python HEP ecosystem 

‣modular design: drop in and out of cabinetry whenever needed 

Introduction

the HistFactory pdf (pyhf docs)
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https://cds.cern.ch/record/1456844
https://github.com/alexander-held/cabinetry/
https://pyhf.readthedocs.io/
https://pyhf.readthedocs.io/en/latest/intro.html


Working with cabinetry
• cabinetry is used to 

‣design and construct statistical models (workspaces) from instructions in declarative configuration 

- analyzers specify selections for signal/control regions, (Monte Carlo) samples, systematic uncertainties 

- cabinetry steers creation of template histograms (region ⊗ sample ⊗ systematic) 

- cabinetry produces HistFactory workspaces (serialized fit model) 

‣ perform statistical inference 

- including diagnostics and visualization tools to study and disseminate results
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Designing a statistical model
• declarative configuration (JSON/YAML/dictionary)  specifies everything needed to build a workspace 

‣ can concisely capture complex region ⊗ sample ⊗ systematic structure
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• workspaces construction happens in three steps: 

1) create template histograms from columnar data following config instructions 

- backends execute instructions (default: uproot, experimental: coffea)   

2) optional: apply post-processing to templates (e.g. smoothing) 

3) assemble temples into workspace (JSON file) 

• utilities provided to visualize and debug fit model  

• possible to provide custom code for template creation

fit to 

data

Template histograms and workspace building
visualization of individual 

template histograms

fit model visualization

event yield table

synthetic examples used for these slidesAlexander Held 5

https://uproot.readthedocs.io/
https://coffeateam.github.io/coffea/


• implementations for all common inference tasks exist 

‣ includes associated visualizations 

‣ results validated against ROOT-based implementation

Statistical inference

upper parameter limits

nuisance parameter pulls

nuisance parameter impacts

parameter correlations

likelihood scans

discovery significance

synthetic examples used for these slidesAlexander Held 6

example: to produce both plots below, use 3 lines of Python to call the cabinetry API 
or single CLI instruction: $ cabinetry fit --pulls --corrmat ws.json



Working with an unknown workspace

fit
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(workspace contains 
additional channels not 

shown here)

• pick a workspace from HEPData: 10.17182/hepdata.89408.v3 (analysis: JHEP 12 (2019) 060) 

‣ download with pyhf, start performing inference and studying fit model with cabinetry in seconds 

• try it out: run on Binder!

https://doi.org/10.17182/hepdata.89408.v3
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-31/
https://mybinder.org/v2/gh/cabinetry/cabinetry-tutorials/master?filepath=HEPData_workspace.ipynb


Future directions

• cabinetry is being actively developed 

‣ everything shown in these slides (and more) is available: try it out on Binder! 

• next steps and goals: 

‣ short term: improved visualization API for simplified figure handling and customization 

‣more generic handling of templates related to interpolation 

- include infrastructure to support generic systematics beyond HistFactory “up/down” types 

‣ longer term: support end-to-end automatic differentiation 

- optimize analysis selection and design via gradient descent, see neos for an example 

‣ your ideas? 

‣ your contributions and thoughts are welcome!
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tutorial repository

https://mybinder.org/v2/gh/cabinetry/cabinetry-tutorials/master
https://github.com/gradhep/neos
https://github.com/cabinetry/cabinetry-tutorials


Summary

• cabinetry is 

‣ a modular, Python-based library to create and operate statistical models for inference with template fits 

‣ leveraging the power of many libraries in a growing Python HEP ecosystem 

‣ openly developed on GitHub 

‣ available to try it out yourself on Binder!
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Backup
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Links to cabinetry
• cabinetry: 

‣can be installed via $ pip install cabinetry 

- cabinetry[contrib] for extra features 

‣ is open source and publicly developed 

- developed on GitHub 

- published on PyPI 

- documented on Read the Docs 

- part of IRIS-HEP 
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cabinetry on PyPI

documentation on Read the Docscabinetry on GitHub

https://github.com/alexander-held/cabinetry/
https://pypi.org/project/cabinetry/
https://cabinetry.readthedocs.io/
https://iris-hep.org/projects/cabinetry.html
https://pypi.org/project/cabinetry/
https://cabinetry.readthedocs.io/
https://github.com/alexander-held/cabinetry/


• HistFactory is the standard model used in ATLAS for binned statistical analysis 

‣ pyhf is a python implementation of this model 

‣ the HistFactory model specifies how to construct the likelihood function 

‣ cabinetry turns a declarative specification about cuts, systematics etc. into a statistical model 

‣ pyhf turns that model into a likelihood function

Statistical analysis: the HistFactory model
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prediction (sum of samples)
constrained parameters 

controlling systematic variations

https://cds.cern.ch/record/1456844/
https://pyhf.readthedocs.io/
https://github.com/alexander-held/cabinetry/


cabinetry within the broader ecosystem
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interface generally well defined

possibilities for specifying cuts / translating between languages

hep_tables
not explored yet

fitting-as-a-service 
to be explored

synergies with hist

https://indico.cern.ch/event/960587/contributions/4070323/


Why cabinetry?
• why cabinetry? 

‣ pure Python and no ROOT dependency, fills gap in Python ecosystem 

- made possible by uproot, awkward-array, boost-histogram , pyhf 

‣modular approach: avoid lock-in 

- benefit from growing columnar analysis ecosystem (coffea etc.) 

‣ openly developed, fully available to broader community beyond a specific experiment 

‣ follow good practices with extensive automated testing (see coverage) 

‣ chance to take different design decisions informed by years of experience with existing tools 

- in particular: declarative approach, but allow custom code injection at core steps in the workflow 

• why the name? 

‣ a workspace is like a cabinet — it organizes data into many bins (like drawers in a cabinet) 

‣ the building of these “workspace cabinets” is cabinetry
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https://uproot.readthedocs.io/
https://awkward-array.org/
https://boost-histogram.readthedocs.io/
https://pyhf.readthedocs.io/
https://coffeateam.github.io/coffea/
https://app.codecov.io/gh/alexander-held/cabinetry


Design considerations
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Design considerations (1)

• modularity 

‣ functionality is factorized wherever possible 

- use the pieces you want / need, without needing to commit to only using cabinetry 

‣no interplay between workspace building and fitting 

- use fitting / debugging utilities for any HistFactory workspace, including ROOT version (convert with pyhf) 

‣modularity makes it easier to interface new technologies / libraries that may appear in the future 

• usability as a library 

‣ cabinetry can be used as a framework (e.g. via the CLI), but more control is possible by using it as a library 

- control program flow by selecting what function to call when, and modify parameters as needed
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• workspace building 

‣ core library implements logic to generate instructions for histogram building 

‣histogram building is factorized (see cabinetry.contrib) 

‣ can use custom code called by cabinetry for histogram building 

- avoids re-implementation of logic for histogram building and workspace creation 

• fitting 

‣ lightweight containers storing results (example: FitResults) 

‣ easy to convert to other formats as needed, or serialize to file as JSON/YAML/ROOT…

Design considerations (2)
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example: 
results from a MLE fit

https://cabinetry.readthedocs.io/en/latest/api.html#module-cabinetry.contrib
https://cabinetry.readthedocs.io/en/latest/api.html#cabinetry.fit.FitResults


Configuration
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• configuration is built from blocks of settings, a JSON schema describes this structure 

• General settings used for global parameters 

Configuration structure
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general settings

list of phase space 
regions (channels)
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https://cabinetry.readthedocs.io/en/latest/config.html


• specify a list of phase space regions via Regions

Regions

event selection requirements

variable to bin in

binning to use in histograms
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• list all samples (Monte Carlo and data) via Samples

Samples

the paths combine to form the path per sample 
(can also use RegionPaths in there)

sample-specific settings
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• list instructions for systematic uncertainties via Systematics and define normalization factors with NormFactors

Systematics & normalization factors

defines a HistFactory NormSys

use same structure for up/down templates

settings specified for a template override 
nominal  settings used for sample

NormSys and HistoSys

which samples to act on
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Python API* and CLI 
* only showing high-level API here, see e.g. model_utils for lower level utilities 
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https://cabinetry.readthedocs.io/en/latest/api.html#module-cabinetry.model_utils


The Python API - from config to fit results (1)

create template histograms 
from config instructions

apply optional post- 
processing, e.g. smoothing

visualize all templates: 
useful debugging utility

create a HistFactory 
workspace
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The Python API - from config to fit results (2)

• cabinetry produces all instructions for 

building template histograms 

‣histograms produced by backend (e.g. 

with uproot), called by cabinetry 

‣ can inject custom code, which cabinetry 

will call for histogram building instead 

• custom histogramming code allows generation 

of templates from arbitrarily complex rules
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The Python API - from config to fit results (3)

direct access to pdf and data 
(plus auxiliary data)

visualizations: see 
following slides

maximum likelihood fit

nuisance parameters 
ranked by impact

• some inference examples with cabinetry:
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• users might want to build histograms in ways that cannot easily be supported 

• cabinetry provides a decorator for user-provided functions to build histograms that match a pattern

Template overrides
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use function for samples 
with name Data 
(wildcards supported)

user-provided function 
returns histogram



Command line interface

• a command line interface exists for model building and inference 

‣ less control over execution, more immediate 

‣useful to quickly debug unknown workspaces 

‣ documentation: command line interface
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goodness-of-fit via saturated model 

https://cabinetry.readthedocs.io/en/latest/cli.html
http://www.physics.ucla.edu/~cousins/stats/cousins_saturated.pdf

