
Counter-based pseudorandom number generators for
CORSIKA 8

A multi-thread friendly approach

A. Augusto Alves Jr*, Anton Poctarev* and Ralf Ulrich*

Presented at 25th International Conference on Computing
in High-Energy and Nuclear Physics
May 18, 2021

*Institute for Astroparticle Physics of Karlsruhe Institute of Technology
1/10

CORSIKA 8

CORSIKA 8 is a new framework for the modelling of extensive air showers in astroparticle
physics. Here is a short summary:

• C++17 compliant.

• Efficiency and scalability for deployment in HPC environments: multiprocess, multithread
and multiplatform.

• Precision and reproducibility.

• Modular design.

• Flexible geometry and environment specification.

As any Monte Carlo technique based program, CORSIKA 8 needs an efficient and reliable
facility for generation of pseudorandom number streams.

2/10

https://link.springer.com/article/10.1007/s41781-018-0013-0

Conventional pseudorandom number generators

• Most of the conventional pseudorandom number generators (PRNGs) scale poorly on
massively parallel platforms (modern CPUs and GPUs).

• Inherently sequential algorithms:
si+1 = f (si),

where si is the i-th PRNG state.

• The statistical properties of the generated numbers are dependent on the function f and
of the size of si in bits. Usually f needs to be complicated and si large.

• PRNGs can be deployed in parallel workloads following two approaches: multistream and
substream.

• Both approaches are problematic due pressure on memory, impossibility to jump into far
away states skipping the intermediate ones, correlations between streams.

3/10

Counter-based pseudorandom number generators

The so called “counter-based pseudorandom number generator” (CBPRNG) produces sequences
of pseudorandom numbers following the equation

xn = g(n),

where g is a bijection and n a counter. Basic features:

• Very efficient. Actually, in many implementations it allows trading-off performance for
efficiency in dynamic and transparent way.

• Have null or low pressure on memory since they can be implemented in a fully stateless
fashion.

• Very suitable for parallelism, since they allow to jump directly to an arbitrary sequence
member in constant time.

4/10

Categories of CBPRNGs

• Cipher-based generators:
• ARS (Advanced Randomization System) is based on the AES cryptographic block cipher.
• Threefry is based on Threefish a cryptographic block cipher.

• Non-cryptographic bijective transformation generators:
• Philox. Deploys a non-cryptographic bijection based on multiplication instructions.
• Squares. This algorithm is derived using ideas from “Middle Squares” algorithm, originally

discussed by Von Neuman, coupled with Weyl sequences.

The current implementation uses ARS, Threefry and Philox from Random123 library. Squares
is natively implemented.

5/10

https://www.deshawresearch.com/resources_random123.html

Iterator-based design for parallelism

.

• Iterators are a generalization of pointers and constitutes the basic interface connecting all
STL containers with algorithms.

• Iterator-based designs very convenient for parallelism.

• A very popular choice for implementing designs based on lazy evaluation.

These features considered all together make an iterator-pair idiom the natural design choice for
handling the counters and the CBPRNG output, in combination with lazy-evaluation to avoid
pressure on memory and unnecessary calculations. The current implementation uses iterators
from TBB library.

6/10

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-threading-building-blocks-onetbb.html

Iterator-based API

The streams are represented by Stream<Distribution, Engine> class:

• It is thread-safe and handles multistream
and substream parallelism.

• Produces pseudorandom numbers
distributed according with Distribution

template parameter.

• Handles 232 streams with length 264 ,
corresponding to 2048 PB of data, in
uint64_t output mode.

1 template<typename Distribution, typename Engine>
2 class Stream
3 {
4 public:
5
6 //constructor
7 Stream(Distribution const& dist, uint64_t seed, uint32_t stream);
8
9 //stl-like iterators

10 iterator begin() const;
11 iterator end() const;
12
13 //access operators
14 double operator[](size_t n) const;
15 double operator()(void);
16 };

Fully compatible with C++ standard library distributions.
7/10

Performance measurements

CBPRNG Time - stream (ns) Time - stl distribution (ns)

Philox 8.853 8.062

ARS 9.031 8.684

Threefry 11.458 12.145

Squares3 8.691 7.956

Squares4 10.891 10.024

The second column lists the time spent calling the method
Stream<std::uniform_real_distribution<double>, Engine>::operaror[](size_t i) . The third
column lists the time for calling the distribution directly. Measurements taken in a Intel Core
i7-4790 CPU, running at 3.60GHz with 8 threads (four cores) machine.

8/10

Integration into CORSIKA 8

• Currently CORSIKA 8 uses std::mt19937_64 , the Mersenne Twister (MT) implementation
of the C++17 Standard Library, as its primary pseudorandom number generator.

• MT is known to fail statistical tests. It also stores a huge state, of almost 2.5 kB, and
operates strictly sequentially.

The integration of the iterator-based Stream API into CORSIKA 8 is straightforward:

• Refactoring of the internal algorithms is not required.
• The distribution and management of multiple instances of CORSIKA 8, configured with

different seeds and running in parallel on clusters and other distributed systems is not
impacted.

• Enables further development of more fine-grained parallelism into the existing algorithms
in a transparent way.

9/10

Summary

The deployment of CBPRNGs for the production of high-quality pseudorandom numbers in
CORSIKA 8, using an iterator-based and multi-thread friendly API has been briefly described.

• The API is STL compliant, lightweight and does not introduce any significant overhead for
calling the underlying generators and distributions.

• The API allows the efficient management of parallelism using the substream approach,
providing up to 232 sub-sequences of length 264 , configured with the same seed.

• The streams can be accessed sequentially or in parallel using the API components.

• A public repository under a GPLv3:

https://gitlab.ikp.kit.edu/AAAlvesJr/random_iterator

10/10

https://gitlab.ikp.kit.edu/AAAlvesJr/random_iterator

Thanks

Backup

Statistical tests

• The CBPRNGs pass all the pre-defined statistical test batteries in TestU01, which includes
SmallCrush (10 tests, 16 p-values), Crush (96 tests, 187 p-values) and BigCrush (106
tests, 254 p-values).

• BigCrush takes a few hours to run on a modern CPU and it consumes approximately 238

random numbers.

• Additionally, all CBPRNGs have been tested using PractRand, using up to 32 TB of
random data. No issues have been found.

http://simul.iro.umontreal.ca/testu01/tu01.html
https://sourceforge.net/projects/pracrand/

Examples of showers

Philox

1010 1011 1012 1013 1014 1015 1016

E in eV

10 18

10 16

10 14

10 12

10 10

10 8

dN
/d

E
in

 e
V

1

+

MT

1010 1011 1012 1013 1014 1015 1016

E in eV

10 18

10 16

10 14

10 12

10 10

10 8

dN
/d

E
in

 e
V

1

+

CORSIKA 8 simulation of energy spectra at sea level for a single proton primary particle at 40
deg with 1017 eV and cutoff at 60 GeV.

	Appendix

