
FuncADL: Functional Analysis
Description Language

Mason Proffitt and Gordon Watts
(University of Washington)

2021-05-18
vCHEP 2021

Motivation

● Query languages:
○ Database management systems help to address, among other issues[1]:

■ data redundancy
■ data independence

○ A key aspect of database management is query languages, such as SQL
● Functional languages:

○ Functional programming offers several desirable features for physics analyses:
■ Declarative
■ Stateless
■ Lazy

● Both of these concepts lead to more modular code:
○ Insulate analysis code from data storage location and file format
○ Insulate each section of code from other parts of the code

2[1] https://opentextbc.ca/dbdesign01/chapter/chapter-3-characteristics-and-benefits-of-a-database/

https://opentextbc.ca/dbdesign01/chapter/chapter-3-characteristics-and-benefits-of-a-database/

Interface (front end)

● FuncADL is:
○ a functional query interface
○ modeled after Language INtegrated Query (LINQ[2], part of C#)
○ using Python as a host language

● Queries are built from a set of basic operators like Select, Where, Count, etc.
● Example:

○ To retrieve ET
miss in all events with at least two jets with pT > 40 GeV:

EventDataset(dataset_identifier) \

.Where(lambda event: event.Jet_pt.Where(lambda pt: pt > 40).Count() >= 2) \

.Select(lambda event: event.MET_pt)

3[2] https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

EventDataset() yields a sequence of events

Where() applies a filter function to each sequence element

Jet_pt is a sequence within each event

Count() reduces a sequence to an integer (its length)

Select() applies a transformation to each sequence element

MET_pt is a single value in each event

Interface (front end)

EventDataset(dataset_identifier) \

.Where(

lambda event: event.Jet_pt.Where(

lambda pt: pt > 40

)

.Count() >= 2

) \

.Select(

lambda event: event.MET_pt

)

4

Back end

● Back end translates FuncADL query into appropriate native code for
execution on underlying file format

● Code generation is done by traversing the Python abstract syntax tree of the
FuncADL query and forming a native representation of each tree node

● Currently three implementations:
○ Uproot back end

■ Generates Python code
■ Can operate on any flat ROOT ntuple

● For example: CMS NanoAOD or ATLAS DAOD_PHYSLITE
○ xAOD (ATLAS) back end

■ Generates C++ code
○ CMS Run 1 AOD back end

■ Generates C++ code
○ More to come!

5

Full standalone example
>>> from func_adl_uproot import UprootDataset
>>> ds = UprootDataset('root://eospublic.cern.ch//eos/root-eos/benchmark/Run2012B_SingleMu.root')
>>> filtered_missing_ET = ds.Where(lambda event: event.Jet_pt.Where(lambda pT: pT > 40).Count() >=
2).Select(lambda event: event.MET_pt).value()
>>> filtered_missing_ET
<Array [15, 44.7, 30.5, ... 123, 30.3, 20.4] type='6665702 * float32'>
>>> import matplotlib.pyplot as plt
>>> plt.hist(filtered_missing_ET, bins=100, range=(0, 100))
>>> plt.xlabel(r'$E_\mathrm{T}^\mathrm{miss}$ [GeV]')
>>> plt.ylabel('Events')
>>> plt.show()

6

https://github.com/masonproffitt/func_adl_benchmarks/blob/c4355bf910fc6cbc6ffc20d69a6b0b52eca2b580/swan_notebook.ipynb

Software ecosystem

● FuncADL is connected to multiple other IRIS-HEP projects, including:
○ ServiceX

■ A high-performance data delivery service
■ Provides a centralized and highly scalable platform to run FuncADL queries
■ Can be used to efficiently query large LHC Grid datasets
■ Talk by KyungEon Wednesday morning:

● https://indico.cern.ch/event/948465/contributions/4323965/
○ hep_tables

■ Essentially FuncADL under the hood, but with a DataFrame interface
■ Provides a consistent numpy/awkward/pandas-like interface across data sources
■ Can use ServiceX to provide the back end operations
■ Talk by Gordon Wednesday evening:

● https://indico.cern.ch/event/948465/contributions/4324133/

7

https://indico.cern.ch/event/948465/contributions/4323965/
https://indico.cern.ch/event/948465/contributions/4324133/

Summary

● FuncADL is a data query language aimed at porting some of the most
important advantages of database management systems and functional
programming into the realm of physics analyses

● Current back end implementations already support many use cases, and
broader support is on the way

● Being used as a vital component of ServiceX (see KyungEon's talk on Wed.)

● vCHEP paper:
○ https://arxiv.org/abs/2103.02432

8This work was supported by the National Science Foundation under Cooperative Agreement OAC-1836650.

https://indico.cern.ch/event/948465/contributions/4323965/
https://arxiv.org/abs/2103.02432

Backup

9

Links

● FuncADL GitHub repositories:
○ https://github.com/iris-hep/func_adl
○ https://github.com/iris-hep/func_adl_servicex
○ https://github.com/iris-hep/func_adl_uproot
○ https://github.com/iris-hep/func_adl_xAOD

● ServiceX documentation, which includes FuncADL examples:
○ https://servicex.readthedocs.io/en/latest/user/getting-started/

10

https://github.com/iris-hep/func_adl
https://github.com/iris-hep/func_adl_servicex
https://github.com/iris-hep/func_adl_uproot
https://github.com/iris-hep/func_adl_xAOD
https://servicex.readthedocs.io/en/latest/user/getting-started/

ServiceX Flow Chart

Analysis
user

ServiceX

FuncADL
frontend

Big data
(e.g. WLCG)

Transformer

Selected data

FuncADL
backend

ServiceX
frontend

Rucio

Filtering by
rows and
columns

ServiceXSourceXAOD /
ServiceXSourceUpROOT

+ FuncADL query

ServiceXDataset +
qastle query

JSON request

Selected data in requested format
(ROOT, awkward, parquet, etc.)

11

