Quantum Circuit Optimization for Scientific Applications

- W. Jang¹, <u>K. Terashi²</u>, M. Saito², C. Bauer³, B. Nachman³, Y. Iiyama²,
 - T. Kishimoto², R. Okubo¹, R. Sawada², J. Tanaka²
 - ¹ Department of Physics, University of Tokyo ² ICEPP, University of Tokyo
 - ³ Lawrence Berkeley National Laboratory

20 May 2021 vCHEP 2021

HEP and Quantum Computing

- Particle Physics directly probing quantum properties of fundamental building blocks in nature
- Needs of large computing resources in HEP experiments

Natural to explore quantum computing in particle physics

- Present quantum computer, called *NISQ* (noisy intermediate-scale) *quantum device*), still at early stage for general use...
- Need 1) quantum applications with advantage over classical method, and 2) optimizations suitable for NISQ device

International Center for Elementary Particle Physics (ICEPP), University of Tokyo

- ▶ Working on LHC-ATLAS (CERN), MEG (PSI), ILC, ...
- International collaboration with CERN & LBNL

Quantum Algorithm for HEP Simulation

Parton shower processes typically simulated using probabilistic classical calculations (e.g., Markov-Chain MC) Impossible to include all amplitudes of contributing processes when the number of emissions grows

> C. W. Bauer, B. Nachman *et al.* Phys. Rev. Lett. 126, 062001 (2021)

Quantum parton shower model:

- Algorithm designed to be generic to be able to - Consider a system composed of boson ϕ and fermion f simulate processes with different initial states
- Emission of ϕ -boson ($f \rightarrow f \phi$) and splitting ($\phi \rightarrow f f$)
- Interference due to two fermion flavors $\{f_1, f_2\}$ in the intermediate states

• Many quantum gates required to calculate amplitudes at each emission step for every particles

- → Reduction of # of gates crucial for NISQ machine
- Feasible to do that when focusing on specific initial states at run time
- Developed a novel, generic *run-time* optimization protocol called **AQCEL**

AQCEL = **A**dvancing **Q**uantum **C**ircuit by ICEPP and LBNL

Quantum Circuit for Parton Shower Simulation

Only a small fraction of representative circuit for quantum parton shower simulation

Actual circuit contains >1200 gates (after compiling to hardware native gates) just for 2 branching steps in showering...

Quantum Circuit Optimization

Developed a novel optimization protocol called **AQCEL** :

- Removal of redundant gates

Removal of redundant qubit controls by identifying zero- or low-amplitude basis states

AQCEL Optimization Protocol

2 main ingredients for gate reduction:

O Remove redundant qubit controls/gates with identified basis states

Example circuit

Circuit designed to work with different initial states (*a la* parton shower algorithm) can be simplified when running on specific initial state

O Identify basis states with polynomial resources using quantum measurements

Circuit Optimization for Parton Shower Simulation

Significant gate reduction achieved for parton shower simulation by AQCEL

Compared the optimization performance between **AQCEL** and **t**|**ket**) from <u>Cambridge Quantum Computing</u>

Number of native gates in quantum parton shower circuit*

#Gates	Original	t ket>	AQCEL (Classical)	AQCEL (Quantum
CNOT	527	616	178 (<mark>34%</mark>)	64 (12%)
U _{1,2,3}	362	331	102 (<mark>28%</mark>)	24 (7%)
All	889	947	280 (<mark>31%</mark>)	88 (10%)

* 1 splitting step only

Further gate reduction possible by AQCEL if circuit optimized using hardware measurements

Accuracy??

Circuit Optimization for Parton Shower Simulation

Computational accuracy quantified using probability distributions of measured output bit-strings:

$$F = \sum_{k} \sqrt{p_k^{\text{orig}} p_k^{\text{opt}}} \quad (Classical Fidelity)$$

= Probability of k computational basis state before (after) optimization

- AQCEL circuit maintains computational accuracy if circuit optimized classically
- Algorithm performance further improved on quantum computer by AQCEL due to noise suppression if circuit optimized using hardware measurements

More details in arXiv:2102.10008

Summary

Working towards quantum computing applications to high-energy physics

simulation in HEP as a benchmark) for NISQ applications

AQCEL optimization protocol documented in <u>arXiv:2102.10008</u>

arXiv.org > quant-ph > arXiv:2102.10008

Quantum Physics

[Submitted on 19 Feb 2021]

Quantum Gate Pattern Recognition and Circuit Optimizatio

Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin Nachman, Yutaro

There is no unique way to encode a quantum algorithm into a quantum circuit. With limited qubit make the best use of near-term quantum devices. We introduce two separate ideas for circuit optim protocol called AQCEL. The first ingredient is a technique to recognize repeated patterns of quantum second ingredient is an approach to reduce circuit complexity by identifying zero- or low-amplitud is deployed on an iterative and efficient quantum algorithm designed to model final state radiation significant reduction in the gate count without losing any accuracy compared to the original circuit quantum computer using polynomial resources. Our technique is generic and can be useful for a w

Code is made public at <u>Github</u>

GitHub

Working on application-specific circuit design/optimization (quantum parton shower)

Help Advanced S	Search		
on for Scientific Applications	Download: • PDF • Other formats		
o liyama, Tomoe Kishimoto, Ryunosuke Okubo, Ryu Sawada, Junichi Tanaka counts, connectivities, and coherence times, circuit optimization is essential to mization and combine them in a multi-tiered quantum circuit optimization	Current browse context: quant-ph < prev next > new recent 2102		
um gates, opening up the possibility of future hardware co-optimization. The de computational basis states and redundant gates. As a demonstration, AQCEL n in high energy physics. For this algorithm, our optimization scheme brings a t. Additionally, we have investigated whether this can be demonstrated on a vide variety of quantum algorithms.	References & Citations INSPIRE HEP NASA ADS Google Scholar Semantic Scholar 		

Feedback appreciated!

Backup

Quantum Gate Pattern Recognition

Developed a novel optimization protocol called **AQCEL** : Identification of repeated sets of gates for application-specific gates/hardware control

- Analyze circuit structure using directed acyclic graph
- 3-level pattern matching to identify repeated gates

Recognized Gate Sets for Parton Shower Simulation

Level-2 matching

Quantum Gate Pattern Recognition

Developed a novel optimization protocol called **AQCEL** : Identification of repeated sets of gates for application-specific gates/hardware control

