

Motivation

- High Luminosity LHC will start its operation in 2027:
 - high luminosity (\sim 5 × 10³⁴ cm² s⁻¹)
 - · large pileup (up to 200 collisions per bunch crossing)
- CMS Projections: **significant gap** between future CPU needs and availability
- The biggest contributor to CPU usage is event reconstruction (\sim 6% by HGCAL)

High-Granularity CALorimeter (HGCAL) @ CMS

⇒ Silicon sensors

- measure electromagnetic and hadronic showers
- 28 (em) + 22 (had) layers
- \sim 30K wafers (\sim 6M channels)
- area of 620 m²

⇒ Plastic scintillator tiles + SiPM

- measure hadronic showers
- 14 layers
- \sim 4K tiles (\sim 240K channels)
- area of 400 m²

\Rightarrow **Total weight**: $\sim 220 \times 2$ tonnes

HGCAL Reconstruction Chain

Energy rescaling of uncalibrated energy deposits in the GPU

- Each CUDA thread maps to a single hit (no hit-communication required)
- The subdetectors allow the usage of CUDA streams for parallellization

• The advantages of **Structures of Arrays** (SoAs) are exploited

Energy rescaling of uncalibrated energy deposits in the GPU

- The workflow is **split into four** for flexibility and validation purposes:
 - 1. Conversion of the CMSSW legacy uncalibrated hits into a SoA followed by its transfer to the GPU;
 - 2. Execution CUDA kernels in the GPU;
 - 3. Transfer the calibrated SoA back to the CPU (optional);
 - 4. Conversion of the SoA to legacy calibrated hits and storage (optional).
- Code fully integrated in the official CMS software.
- · Validation shows **perfect agreement**.

Performance

 Full Node (Intel(R) Xeon(R) Silver 4114 with 40 logical cores) vs. Single GPU (T4 Nvidia)

 $\cdot \sim$ 50 MiB per CUDA stream of GPU peak memory (\sim 550K hits/event at PU200)

Performance

- Timing of the rescaling algorithm only
- nvprof for kernel execution and std::chrono for CPU algorithm

Speedup of around three orders of magnitude (for CE-E with ~500K hits/event)

8

Conclusions

- · Validation and performance measurements were performed
- The results show speedup benefits
 - ⇒ Cost benefits are expected too
- · This work paves the way for future HGCAL accelerator developments
 - ⇒ Link current GPU modules and test their performance
 - ⇒ Use abstraction libraries (eg. alpaka)
 - ⇒ Port the **full HGCAL reconstruction** into GPUs

Acknowledgments

Bruno Alves thanks the following institutions for the funding provided:

- Fundação para a Ciência e Tecnologia (FCT): SFRH/BEST/150186/2019
- · Organisation européenne pour la recherche nucléaire (CERN)