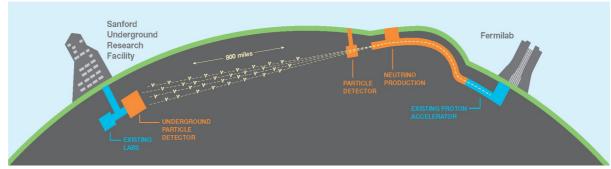


Evaluation of a high-performance storage buffer with 3D XPoint devices for the DUNE data acquisition system

Adam Abed Abud (CERN / University of Liverpool)


25th International Conference on Computing in High-Energy and Nuclear Physics May 18, 2021

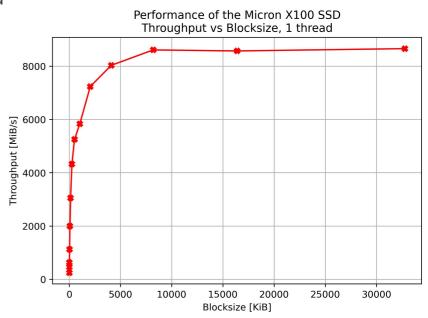
Outline

- The DUNE experiment
- DUNE Data Acquisition System
- Synthetic benchmarking results with the Micron X100
- The MiniDAQ application
- Integration with the DUNE data acquisition system
- Conclusion and outlook

The DUNE experiment

- The DUNE experiment is a leading international experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and proton decay searches
 - Data taking expected for 2027
- Near detector close to the source
 - Accelerator (FNAL) generating an intense neutrino beam
- Far detector located 1300 km from the source and 1.5 km underground
 - 4 cryogenic modules, each with 17 kton of liquid argon
 - Detectors made up of a Time Projection Chamber and photon detector
 - Trigger and Data Acquisition:
 - 4 independent instances (one for each module), synchronized to a common clock

DUNE Data AcQuisition system (DAQ)

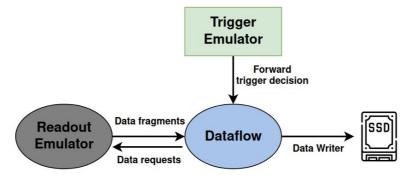

- DUNE uses a continuous readout system for the TPC detector
 - Data throughput for each readout unit: approximately 10 GB/s from 10 optical links
 - Total of 165 readout units per detector module (X4 detector modules)
 - Total of ~1.5 TB/s for each detector module
- Role of Data Selection is to combine subset of readout data into time windows of interesting signals:
 - \circ Time "window" can vary from < 1 ms to ~100s
 - Data size ranging from few MB to ~150 TB
- To avoid oversizing the resources in the DAQ architecture, a **local storage** system is used in the Readout System
- Physics example: storing supernova neutrino burst (SNB) events
 - One of the physics goals of DUNE
 - Complex detection: events with rare, low energy and distributed signatures
 - Long trigger latency
 - DAQ requirements:
 - Local storage capable of sustaining a stream of data for 100 seconds at ~10 GB/s
 - Rare event: no endurance problems for the storage system

 Adam Abed Abud VCHEP -18/05/2021

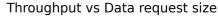
Micron X100 as a high-performance buffer

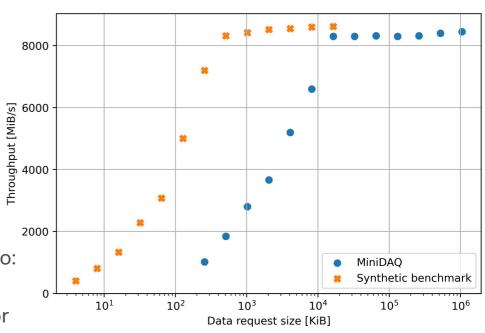
Synthetic benchmarks

- The Micron X100 is an example of PCIe NVMe SSD based on the 3D XPoint technology
- **Goal**: evaluate the performance of the drives as a possible application for the DUNE local storage
- Synthetic benchmarks
 - Evaluate the sequential write throughput with a single thread
 - Max. write throughput achieved is 8.5 GiB/s
 - Compatible with hardware specification
- Micron X100 device is capable of sustaining 85% the throughput of a single readout unit
- Promising technology:
 - Example: combine 3 Micron X100 SSDs for 4 readout units



Integration with the DUNE Data Acquisition System


The MiniDAQ application


- Evaluation with a more realistic workload
- Use of a test application (MiniDAQ) that contains the most relevant features of the DUNE DAQ system
 - Readout Emulator: data input from 80% of the throughput of a single DUNE readout unit
 - Constraint due to the maximum write throughput of the drive
 - Trigger Emulator: responsible for the data selection
 - Data Writer: implements the interface to the local storage
- Realistic emulation of a single DUNE readout unit

Performance results with the MiniDAQ application

- In the MiniDAQ tests, selected data are sent with a configurable request data size and trigger rate
- The data request rate was chosen in order to maximise the throughput in a stable system
 - Running with no trigger inhibits or backpressure
- Similarly to the synthetic results it is possible to sustain in a stable condition more than 8 GiB/s
 - Use of data aggregation to achieve the highest throughput
- Differences with the synthetic results may be due to:
 - Additional operations (e.g. memory copy)
 for the interface with the Readout Emulator

Conclusion and outlook

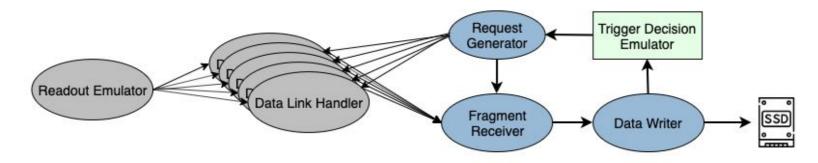
- The Micron X100 is a high-performance storage device which can be an interesting fit for the DUNE data acquisition system
- Synthetic performance tests show that it is possible to saturate the bandwidth provided by the drive and achieve the nominal throughput of approximately 8.5 GiB/s
- The Micron X100 was also integrated in a prototype application for the DUNE DAQ
 - Performance tests demonstrated that a single drive can sustain steadily 80% of the traffic generated by one DUNE readout unit when using data aggregation
- Suitable technology for the DUNE local storage

Outlook

- Other suitable storage technologies will also be evaluated as a possible candidate for the DUNE local storage system
- Investigation of streaming data directly from the Readout system instead of requesting data as it is in the current application

Thank you!

Adam Abed Abud



Further details

The MiniDAQ application

- Use of a test application (MiniDAQ) that contains the most relevant features of the DUNE DAQ system
 - **Readout Emulator**: data input from **half** of a DUNE readout unit
 - Data Link Handler: temporary buffering of raw data for each link. Throughput per link ~1 GB/s
 - 2 Readout Emulators to simulate 1 DUNE readout unit
 - Trigger Emulator: responsible for the data selection
 - Request Generator: Converts trigger decisions into data requests to be sent to the Data Handlers
 - Fragment Receiver: Receive the data from the Data Handlers and forward them to the DataWrite
 - Data Writer: implements the interface to the local storage

Integration with the DUNE DAQ

- The mechanism of the Data Writer process consists:
 - Initialization: creation of a memory aligned buffer
 - Setting up relevant CPU affinities
 - Write requested data if a trigger has been enabled
- An inhibit mechanism is also in place in case the Data Writer is not able to sustain the rate of incoming data
 - In this case a warning message is issued ("Data flow is BUSY")
- It is necessary to align the data extraction rate with the data production rate in order to avoid any data loss during operation
- The data writing is done by executing kernel I/O asynchronous operations (AIO library)

Algorithm 1: Data Writer mechanism.

```
initialize data store;
allocate mem-aligned buffer;
start data writer thread;
set CPU affinity;
while trigger_flag do

receive requested_data;
for fragment in requested_data do

get ptr to fragment location;
get fragment size;
memcpy(buffer, fragment, size);
flush_to_disk(buffer);
end
check inhibit(fragment);
```