

Particle Physics, Workflows and Data Orchestration

27 August 2020

Big questions addressed by Particle Physics

The Standard Model of Fundamental Physics does not explain:

- Non-baryonic Dark Matter
- Inflation Field
- Dark Energy
- Universal Baryonic Asymmetry
- Neutrino Masses
- Neutrino Mixing
- Radiative corrections to the Higgs Mass

Standard Model of Elementary Particles

What is the New Fundamental Physics?

ATLAS - Search for New Physics by creating new particles

27 August 2020

Flavour Physics – Belle II, LHCb & COMET

Provides a unique probe to unravel deeper mysteries of universe with intense sources and highly sensitive detectors

SABRE

Search for non-baryonic Dark Matter via direct detection Challenge is to minimize backgrounds => Underground Look for Annual Modulation:

=> Northern and Southern Hemisphere Labs

Residuals (cpd/kg/keV

Current Status

Higgs Measurements

Sophisticated searches and precision measurements will be made to determine the nature of New Physics

Global Computing

Scale of Computing Resource is too large for CERN (and KEK). Employ Computing Clusters around the world. This is the WLCG

Workflows & Data Orchestration

Current scale of data flow of WLCG

Sustained WLCG data flow of 50 GB/s => 1600 PB/year

Australia-ATLAS at unimelb Data flow ~ 3 PB/year, (around 1% of ATLAS) (Thank you AARNET!)

Future Experimental requirements

Two most typical use cases for non-desktop particle theory computing:

Profile likelihood ratio $A = \mathcal{L}/\mathcal{L}_{max}$ Profile likelihood ratio $A = \mathcal{L}/\mathcal{L}_{max}$

Dark matter mass (GeV)

1. Calculation of theory

predictions: Monte Carlo simulation of events at colliders, cosmic ray air

showers, etc

2. Parameter scans: calculation of multiple

predictions at many different parameter combinations + comparison to data

(Slides from Pat Scott)

1. Calculation of theory predictions:

- Programmatic workflow needed to process many Monte Carlo events (similar to experiment)
 - generation of initial events
 - > decays/interactions/showering/hadronisation of products
 - detector simulation
- Data orchestration needed in
 - > passing large event samples to detector simulations
 - passing detector-level events to analysis software for comparison with public experimental data

2. Parameter scans:

- Programmatic workflow needed in
 - choosing parameter combinations
 - executing theory calculations
 - > processing theory predictions and experimental data with likelihood calculators
 - > performing final statistical tests comparing parameters & whole theories

- Data orchestration needed in
 - providing experimental data to likelihood functions
 - > distilling results down to a manageable size
 - saving and sharing full sets of predictions and outcomes of statistical tests at all parameter combinations