

Use Cases

- Software Delivery for High Energy Physics
- "Small" Datasets Distribution
- Container Layers Ingestion and Distribution

Software Delivery at Scale

- Primary use case at CERN: High Energy Physics Software
 - > 55 repositories, 70+ TB, 1.2B files
 - 30,000+ clients served via 23 caches (~9 TB)

- Ubiquitous CVMFS client
 - Batch Jobs
 - Software environments on lxplus
 - Hadoop clusters
 - Experiments' online farms
 - SWAN Jupyter Notebooks
 - Scientists' laptops

Software Delivery at Scale

- Worldwide LHC Computing Grid
 - 170+ computing centers, 40 countries

Wall-Clock Time	(in	hours	١

	total -	percentage -
- CH-CERN	243.5 Mil	10%
US-FNAL-CMS	174.7 Mil	7%
US-T1-BNL	153.8 Mil	6%
US-MWT2	133.9 Mil	5%
T2_US_Wisconsin	110.5 Mil	4%
T2_US_Nebraska	98.9 Mil	4%
CA-TRIUMF	93.0 Mil	4%
T2_US_MIT	87.2 Mil	3%
RU-JINR-T1	75.9 Mil	3%
T2_US_Caltech	68.5 Mil	3%
T2_US_Florida	63.7 Mil	3%
US-NET2	62.3 Mil	2%

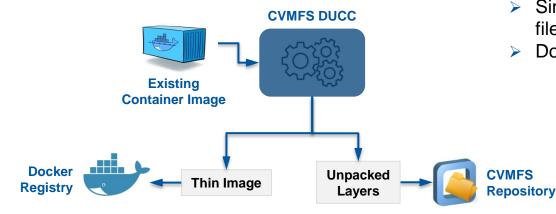
- **Euclid Consortium**, Astrophysics
 - Operate a decoupled CVMFS infrastructure across ~10 sites

Big Science Orchestration

Distribution of "Small" Datasets

- Conditions data for major LHC experiments
 - ➤ 6 repositories, 1.39 TB, 1.69M files

- Physics Data for Gravitational Waves detectors
 - Virgo, Ligo, Kagra detectors produce ~5TB / year
 - CVMFS to export filesystem-like namespace
 - Actual payload is read from StashCache
 - Added authentication through x.509 plugin


S. Bagnasco, "VIRGO and Gravitational Waves computing in Europe"

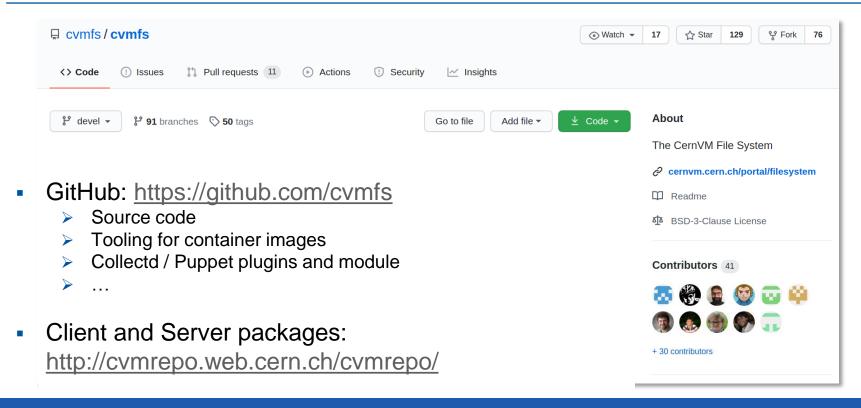
https://indico.cern.ch/event/773049/contributions/3473801/

CVMFS for Container Images

- Server: Ingestion via DUCC
 - Publishes container images in their extracted form on CVMFS
 - Generates and uploads the Thin Image on Docker registries

Client

- No download+extraction of images locally
- Benefit from on-demand fetching of required files only
- Singularity can use flat root file system directly from CVMFS
- Docker requires Graph Driver



Where to Find CVMFS

Where to Find CVMFS

Where to Find CVMFS

- Documentation:
 - http://cvmfs.readthedocs.io/en/stable/
 - http://cernvm.cern.ch/portal/filesystem

- Community mailing list:
 - cvmfs-talk@cern.ch
- CVMFS Workshop Save the date!
 - CernVM Workshop 2021
 1-3 February 2021
 NIKHEF (Amsterdam, NL)

Last Workshop, June 2019: https://indico.cern.ch/event/757415/

The CERN VM File System as Global Software Delivery Fabric

Thank you!

Enrico Bocchi
enrico.bocchi@cern.ch

Backup and Further Details

The CernVM File System

https://github.com/cvmfs/cvmfs

Write

 A publish-subscribe file system tuned for maximum dissemination

```
$ cvmfs_server transaction myrepo.cern.ch
$ cvmfs_server publish myrepo.cern.ch
```

- Publisher node is the single source of (new) data: read-write permissions
- Install applications once on the publisher, access from anywhere

Read

 POSIX file system access to globally available directory / cvmfs

```
$ ls /cvmfs/myrepo.cern.ch
myFOLDER myREADME.md
```

- HTTP-based read-only access
- RedHat, Debian, Ubuntu, macOS, ...
- Clusters, cloud, supercomputers, end-user laptop

Infrastructural Components

- > Tiered Servers: Stratum 0s and 1s
- Site Caches and CVMFS Clients

CVMFS Stratum 0s

- cvmfs server package for repository administration
 - CLI to manage transactions and publish changes to the repository

```
# cvmfs_server transaction myrepo.cern.ch
# tar xvf myarchive.tar.gz -C /cvmfs/myrepo.cern.ch
# cvmfs_server publish myrepo.cern.ch
```


- Repository becomes writable on Stratum 0
- Files are transformed into content-addressable objects
- Authoritative storage can be local storage or S3 backend

Transformation

- Create file catalogs
- Compress files
- · Calculate hashes

CVMFS Stratum 1s

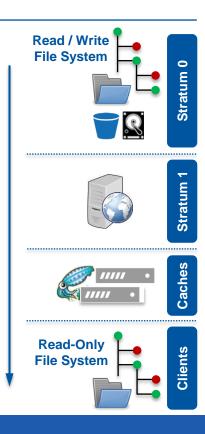
- Stratum 1 servers in Europe, US, Asia
 - Reduced RTT to caches and clients
 - Improved availability in case of Stratum 0 failure
- RESTful CVMFS GeoAPI service
 - Clients submit request with desired resource and Stratum 1s list
 - Stratum 1 returns sorted list of Stratum 1s
 - Based on MaxMind IP database

Stratum 1

HTTP GET
http://s1.cs3.org/cvmfs/<desired_resource>/api/v1.0/geo/<list_of_known_stratum1s>

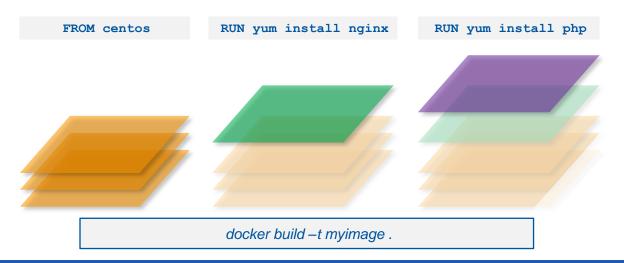
Site Caches

- Off-the-shelf HTTP caching software
- Squid-cache as forward proxy
 - Recommended for clusters of clients
 - Reduce latency to clients and load on Stratum 1s
- Take advantage of cloud based CDNs
 - OpenHTC on CloudFlare
 - Helix Nebula Cloud (RHEA, T-Systems, IBM Cloud)



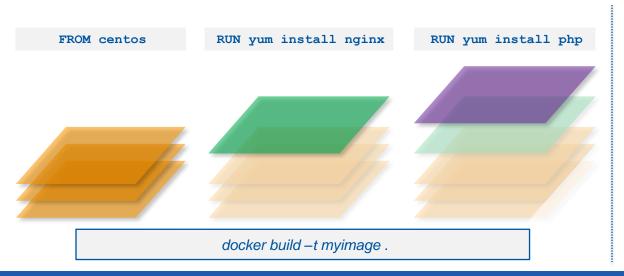
CVMFS Clients

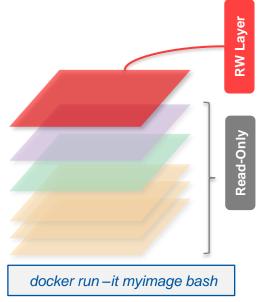
- Client package for /cvmfs access
 - Runs on HPC, Supercomputers, end-users laptops
 - Kubernetes support with in-container mount or CSI driver
 - Dynamic mounting of repositories with autofs
- Local caching
 - Local file system (soft limit enforced)
 - Tiered: In-memory and disk
 - Alien: Cluster and Network file systems
- Embedded tools for troubleshooting and FS verification


Big Science Orchestration

CVMFS for Docker Layers

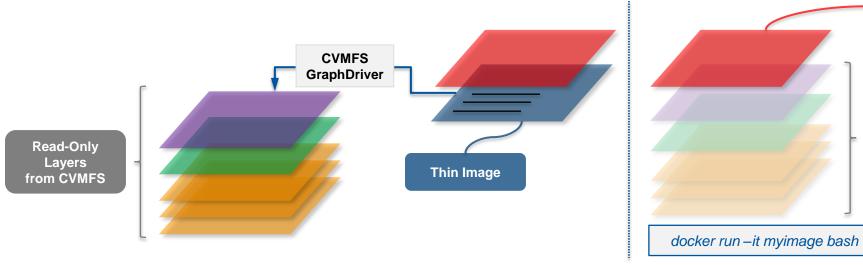
- Docker images are the product of several layers
 - Layers are tarfiles
 - Need to be downloaded and extracted locally


CVMFS for Docker Layers


[root@ThinkPad-X1]# docker history myimage IMAGE CREATED CREATED BY SIZE 75cc2375258a 4 seconds ago /bin/sh -c yum -y install php 66.9MB e779b8a4024f 9 seconds ago /bin/sh -c yum -y install nginx 77.8MB /bin/sh -c #(nop) CMD ["/bin/bash"] 470671670cac 4 days ago 0B /bin/sh -c #(nop) LABEL org.label-schema.sc... <missing> 4 days ago 0B /bin/sh -c #(nop) ADD file:aa54047c80ba30064... <missing> 7 days ago 237MB FROM centos RUN yum install nginx RUN yum install php 382 MB **Total** "[...] but only 6.4% of that data is read." T. Harter, et al., "Slacker: Fast Distribution with Lazy Docker Containers" Usenix 2016 docker build -t myimage.

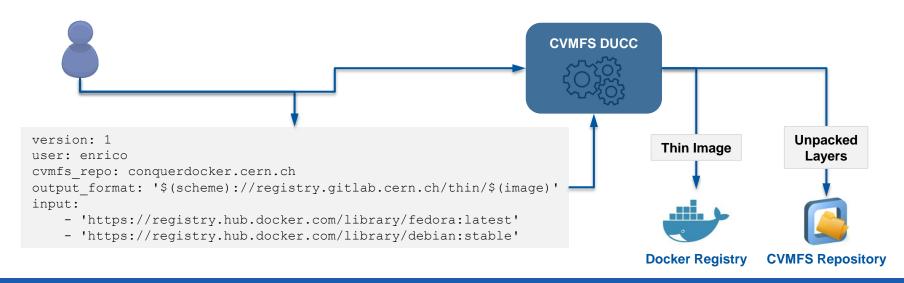
CVMFS for Docker Layers

- Docker images are the product of several layers
 - Layers are tarfiles
 - Need to be downloaded and extracted locally

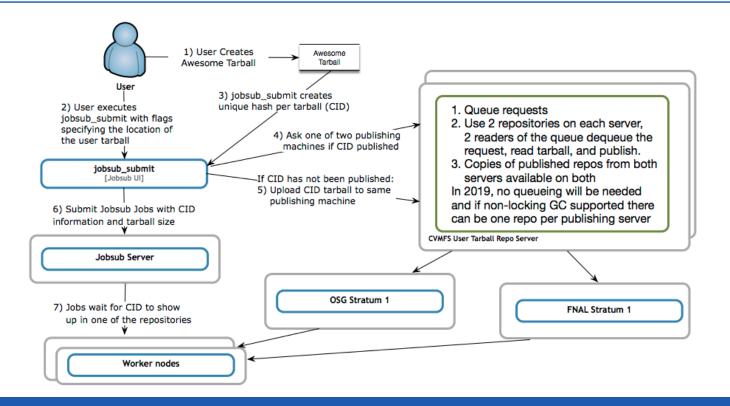


CVMFS serving Docker Layers

- CVMFS GraphDriver allows Docker daemon to use images from CVMFS
 - Images are stored in unpacked form
 - > Access required files only one by one
 - Compatible with images from Docker registries



Read-Only


CVMFS ingesting Docker Layers

- DUCC: Daemon to convert and publish unpacked layers
 - Based on wishlist of Docker images to be ingested
 - Automatic generation and publication of thin image and unpacked layers

CVMFS Users' Contrib

