
DIRAC - a global workload
management system

Daniela Bauer

Overview

● What is DIRAC and what is it being used for ?
● Providing a DIRAC server: Admin perspective
● DIRAC from a user perspective:

○ How do different communities use DIRAC

Overview

● DIRAC is a software originally developed by LHCb that
comprises of:
○ Workload Management System (“Global batch system”)
○ File Catalog
○ Workflow Management System
○ Documentation: https://dirac.readthedocs.io/en/latest/

● Provides a standardized user interface to multiple compute and
storage resources

● Written in Python (for Linux)
○ OpenSource: https://github.com/DIRACGrid/DIRAC

● Apart from LHCb it is used by a number of communities to
manage the various aspects of their data processing:
○ Experiment specific: e.g. Belle2, ILC, Cherenkov Telescope Array,

NICA (JINR), BES (Beijing), biomed
○ Multi-Community: e.g GridPP, France-Grilles, EGI

https://dirac.readthedocs.io/en/latest/
https://github.com/DIRACGrid/DIRAC

Background: GridPP/DIRAC

● GridPP: A collaboration of
19 UK universities

● Focus on providing
computing resources to
the big LHC experiments

● Dedicated “other
experiment” component:
GridPP DIRAC instance
is provided as a means
for non-LHC experiments
to access GridPP (and
other compatible)
resources

Example: The GridPP DIRAC implementation

Add your own
modules as
required

DIRAC: Admin view

continued: + 40 more components

No such thing as a free lunch: Support effort

● Disclaimer: This is the GridPP experience, supporting ~6
active communities at any one time; one or two new
communities a year.

● Core software development is driven by LHCb
○ But: Active developer group (~10 people) drawing from all

communities
● Two research software engineers at approximately ½ FTE

each to provide a production level service:
○ Maintenance/upgrades
○ Bug fixes/Coding new features (first) needed by local

communities
○ DIRAC↔Resource provider debugging
○ User assistance

User interactions with DIRAC

DIRAC as a ‘direct’ user interface:
● Command line tools from DIRAC UI:

○ Once a DIRAC server is set up, it can be used with minimal setup (on the
users’ side
■ Job submission
■ Data access

● DIRAC Python API:
○ Because “by hand submission/shell scripts” don’t scale

● Ganga:
○ https://ganga.readthedocs.io/en/latest/

● Web interface to monitor jobs status etc

Restricted/production usage:
● Community developed submission interfaces build on the

DIRAC Python API

https://ganga.readthedocs.io/en/latest/

The LZ job
submission
interface

Key features:
● Only valid combinations

of software versions can
be selected.

● Requests require
approval by a
production manager
before submission.

● Database keeps track of
status of individual
requests that might
consist of hundreds of
jobs.

LZ: Job submission interface

Web
Interface

Request
DB

Job Monitor
Daemon

GridPP

LZ

Production
Manager

User

Frontend Backend

submits request approves request

releases
& tags

https://github.com/alexanderrichards/LZProduction

https://github.com/alexanderrichards/LZProduction

Advanced DIRAC features: Workflow management

Input
Data
Agent

Trans-
formation

Agent

File
Catalog

far
storage

near
storage

Your
experiment

T
S

Workload
Manager

1

2

3b

5

4

12

3a

Workflow: Any raw data
uploaded to the ‘near’ storage
element is automatically
processed and copied to the
‘far’ storage element. Must
account for temporary
unavailability of target
storage.
(1) Raw data uploaded from DAQ to
near storage
(2) File is registered in catalog.
(3) Transformation System detects
new file:
 (a) TS Client intercepts request
 -or-
 (b) InputDataAgent runs regular
 metadata query.
(Combination of the two is possible.)
(4) Transformation Agent applies rules
and creates processing tasks.
(5) Workload manager submit jobs to
process file.

Thanks for listening

● Questions ?
● Further reading:

○ DIRAC: https://dirac.readthedocs.io/en/latest/
○ Multi-VO DIRAC: Bauer D, Fayer S, 2017, GridPP DIRAC:

Supporting non-LHC VOs on LHC centric resources, J. Phys.:
Conf. Ser. 898 052003 (Link)

○ The LZ UK Data Centre (CHEP 2018)

https://dirac.readthedocs.io/en/latest/
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052003
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_03046/epjconf_chep2018_03046.html

Backup slides

What the users see: “raw” data

Hardware: The GridPP DIRAC server setup

3x 1U servers, Dual Intel Xeon
Silver 4116, 96GB RAM each,
16TB storage.
Note: This is overspec’d.

Jobs by site

NA62 Workflow Management Interface

DIRAC Speak
From the DIRAC Overview page:
https://dirac.readthedocs.io/en/stable/AdministratorGuide/SetupStructure/index.html

Databases:
Keep the persistent state of a System. They are accessed by Services and Agents as a kind of shared
memory. The GridPP DIRAC instance currently has 15 Databases and counting.

Services:
Are passive components listening to incoming client requests and reacting accordingly by serving
requested information from the Database backend or inserting requests on the Database backend.
Services themselves can be clients of other Services from the same DIRAC System or from other
Systems.

Agents:
Are the active components which are running continuously invoking periodically their execution methods.
Agents are animating the whole system by executing actions, sending requests to the DIRAC or third
party services.

System:
Is delivering a complex functionality to the rest of DIRAC, providing a solution for a given class of tasks.
Examples of Systems are Workload Management System or Configuration System.

https://dirac.readthedocs.io/en/stable/AdministratorGuide/SetupStructure/index.html

