The small sphere limits of quasilocal masses in higher dimensions (arXiv:2001.08485, also on CQG)

Jinzhao Wang

Institute for Theoretical Physics, ETH Zürich

Feb 21, 2020 Virtual Conference of the Polish Society on Relativity 2020

ETH zürich

Jinzhao Wang (ETH) [arXiv:2001.08485](#page-16-0) PSR2020 0 / 10

Quasilocal mass

- In GR, purely gravitational energy cannot be covariantly represented as a density. Quasilocal mass (QLM) characterises the gravitational energy quasilocally. (c.f. xie's talk earlier)
- It is a functional that assigns a positive value to a codimension-two topological sphere S using the data associated with S .
- Hawking mass, Hayward mass, Penrose mass, Bartnik mass, Brown-York mass, Liu-Yau mass, Wang-Yau mass and etc.
- It should satisfy: positivity, rigidity, monotonicity, the global asymptotics and the local asymptotics, i.e. the small sphere limit (SSL). Christodoulou& Yau '88, Szabados '09
- We shall focus on the SSL, which effectively probes the local gravitational energy.

◆ ロ ▶ → イ 印

Small sphere limit (SSL)

- There is a conventional way to take the SSL due to Horowitz and Schmidt, known as the light-cone cuts. Horowitz & Schmidt '82
- Given (p, e_0) , one defines a one-parameter family of spheres S_r as light-cone cuts w.r.t. the affine parameter r normalised with e_0 .

- In 4D non-vacuum (with matter), the small sphere limit should yield the stress tensor component: $\lim_{r\to 0} r^{-(n-1)} M(S_r) \propto \, \mathcal{T}(\textbf{e}_0,\textbf{e}_0).$
- In 4D vacuum, the small sphere limit should yield the Bel-Robsinson ${\sf tensor}$ ${\sf tensor}$ ${\sf tensor}$ component: $\lim_{r\to 0} r^{-(n+1)} M(S_r) \propto Q({e}_0, {e}_0, {e}_0, {e}_0).$ $\lim_{r\to 0} r^{-(n+1)} M(S_r) \propto Q({e}_0, {e}_0, {e}_0, {e}_0).$ $\lim_{r\to 0} r^{-(n+1)} M(S_r) \propto Q({e}_0, {e}_0, {e}_0, {e}_0).$ $\lim_{r\to 0} r^{-(n+1)} M(S_r) \propto Q({e}_0, {e}_0, {e}_0, {e}_0).$ $\lim_{r\to 0} r^{-(n+1)} M(S_r) \propto Q({e}_0, {e}_0, {e}_0, {e}_0).$ $\lim_{r\to 0} r^{-(n+1)} M(S_r) \propto Q({e}_0, {e}_0, {e}_0, {e}_0).$ $\lim_{r\to 0} r^{-(n+1)} M(S_r) \propto Q({e}_0, {e}_0, {e}_0, {e}_0).$ $\lim_{r\to 0} r^{-(n+1)} M(S_r) \propto Q({e}_0, {e}_0, {e}_0, {e}_0).$ Szabados '09

The Bel-Robinson (BR) superenergy

- The BR tensor is the "square" of the Weyl tensor that is dominant, symmetric, traceless and divergenceless in vacuum. Bel '59, Robinson '97
- We are interested in the $Q = Q(e_0, e_0, e_0, e_0)$ component and it can be conveniently written in terms of the electromagnetic decomposition of the Weyl tensor. $\,Q = E^2 + B^2. \,$ This is sometimes refered as the Bel-Robinson (BR) superenergy, for its wrong dimension $[T] = -2$, $[Q] = -4$.
- In higher dimensions, the BR tensor has a **unique** generalisation by assuming it is square in Weyl and dominant, where E, H, D are electro-magnetic decompositions of the Weyl tensor in higher dimensions. Senovilla '00

$$
Q = \frac{1}{2} \left[E^2 + H^2 + \frac{1}{4} D^2 \right].
$$
 (1)

4 ロト 4 何 ト

 200

医毛囊 医牙骨下的

QLM in higher dimensions

- We'd like to compute the SSL's in higher dimensions.
- Most investigations of QLM's in the literature are limited to 4D.
- It is difficult to come up with a good definition that works for all dimensions (except maybe the Bartnik mass).
- We make an attempt here to extend the 4D definitions of the Hawking mass Hawking '68, the BY mass Brown & York '93 and the LY mass Liu & Yau '03 to higher dimensions and put sufficient assumptions that allows us to evaluate the SSL. $(c.f.$ Miao, $Tam & Xie'17)$

The Hawking mass

Definition 1

For a spacelike codimension-2 topological sphere S in an n-dimensional spacetime, the Hawking type mass is defined as

$$
M(S) = \frac{\left(\frac{Vol(S)}{\Omega_{n-2}}\right)^{\frac{1}{n-2}}}{(n-2)(n-3)\Omega_{n-2}} \int_S \left(\frac{\mathcal{R}}{2} + \frac{n-3}{n-2}\theta - \theta^+\right) d\sigma \qquad (2)
$$

where ${\cal R}$ is the intrinsic scalar curvature on ${\cal S}$, and θ^\pm are the null expansions.

Remark 1

It reduces to the Misner-Sharp mass for round spheres. This generalisation is also used by M iao, T am & X ie to study the global asymptotics.

The SSL of the Hawking mass

Theorem 1

Let S_r be the family of surfaces shrinking towards p along light-cone cuts defined with respect to (p, e_0) in an n-dimensional spacetime, the limits of the Hawking mass as r goes to 0 are

 \bullet In non-vacuum.

$$
\lim_{r \to 0} r^{-(n-1)} M_H(S_r) = \frac{\Omega_{n-2}}{n-1} T(e_0, e_0)|_p.
$$
 (3)

2 In vacuum or the stress tensor T vanishes in an open set containing p ,

$$
\lim_{r \to 0} r^{-(n+1)} M_H(S_r) = \mathcal{W}|_p \, (\neq Q). \tag{4}
$$

4 D F

JZW '20

The Brown-York mass

Definition 2

Given a spacelike codimension-two topological sphere S embedded on Σ in an n-dimensional spacetime and the reference isometric embedding \tilde{S} in $\tilde{\Sigma}$, then the Brown-York type mass is defined as

$$
M_{BY}(S,\Sigma) := \frac{1}{\Omega_{n-2}(n-2)} \int_S \tilde{H} - H \, \mathrm{d}\sigma \tag{5}
$$

4 ロ ▶ (同

where σ is the induced volume form on S, H is the mean curvature of S in Σ and H is the mean curvature of \tilde{S} as embedded in $\tilde{\Sigma}$.

Remark 2

The mass entails a reference zero point energy and one has to make a choice. We use the lightcone embedding as used by $Brown, Law$ York '98 in calculating the SSL in 4D.

The SSL of the BY mass

Theorem 2

Let S_r be the family of conformally flat light-cone cuts shrinking towards p defined with respect to (p, e_0) in an n-dimensional spacetime, the limits of the Brown-York mass as r goes to 0 are

 \bullet In non-vacuum.

$$
\lim_{r \to 0} r^{-(n-1)} M_{BY}(S_r) = \frac{\Omega_{n-2}}{n-1} T(e_0, e_0)|_p.
$$
 (6)

2 In vacuum or the stress tensor T vanishes in an open set containing p ,

$$
\lim_{r \to 0} r^{-(n+1)} M_{BY}(S_r) = \mathcal{W}|_p. \tag{7}
$$

4 D F

JZW '20

The vacuum limit W

Without further details, the SSL of the Liu-Yau mass is also characterized by the same quantity W . Therefore, quite generally the SSL in arbitrary spacetime dimensions n is characterized by

$$
\mathcal{W} := \frac{(6n^2 - 20n + 8)E^2 + 6(n - 3)H^2 - 3D^2}{36(n - 3)(n - 2)(n^2 - 1)},
$$
\n(8)

whereas the BR superenergy is

$$
Q = \frac{1}{2} \left[E^2 + H^2 + \frac{1}{4} D^2 \right].
$$
 (9)

- In 4D, $D^2 = 4E^2, H^2 = 2B^2$, one recovers the BR superenergy $W = Q = E^2 + B^2$.
- Our results match the earlier 4D results by Horowitz & Schmidt '82, Bergqvist '94, Brown, Lau & York '98, P.P. Yu '07
- \bullet W is not positive in general!

Jinzhao Wang (ETH) [arXiv:2001.08485](#page-0-0) PSR2020 9 / 10

つへへ

Conclusion

- The BR superenergy Q does not characterise the SSL of QLM's in dimensions $n > 4$.
- \bullet Q is replaced by W which is not always positive.
- It is worth to investigate more on the seemingly universal quantity W to clarify its physical meaning.
- It is also plausible that these QLM's are not sensible notions in higher dimensions. To identify a proper notion of QLM, we need more physical insights rather than just geometry.

Thank you for your attention!

4 D F

Isometric embedding

- In higher dimensions, isometric embedding of codimension-two surfaces into Minkowski spacetime may not exist.
- Following BLY, we use light-cone embedding as the references. We would like to isometrically embed our surface to a light-cone \tilde{N}_ρ in Minkowski spacetime \tilde{M}^n . . Brown, Lau& York '98
- We assume conformal flatness to evaluate the SSL. The light-cone embedding exists iff the surface is conformally flat. $B_{\text{Finkmann} 23}$
- The uniqueness is fixed by explicit choices (BLY) and the Gauss-Codazzi equation.

つひひ

Light-cone isometric embedding

The BY mass depends on the hypersurface $\Sigma \supset S$. To fix Σ , we follow the proposal by Brown and York: Brown, Lau & York '98

• Set
$$
H = \theta^+/2 - \theta^-, k = \theta^+/2 + \theta^-
$$
.

For the reference, we set $\tilde{\theta^+} := \tilde{H} + \tilde{k} = \theta^+.$

The Gauss-Codazzi equation $\widetilde{H}^2-(\theta^+-\widetilde{H})^2=\frac{n-2}{n-3}\mathcal{R}$ fixes $\widetilde{H}.$

The definition of the LY mass is similar to the BY mass, but the H is replaced by the norm of the mean curvature vector |H|. Therefore, unlike the BY mass, LY mass is a covariantly defined QLM, so we do not need to fix any hypersurface Σ or $\tilde{\Sigma}$ a priori. Such a surface is shear-free, so the Gauss-Codazzi equation implies

$$
|\tilde{\mathbf{H}}|^2 = \frac{n-2}{n-3}\mathcal{R}.\tag{10}
$$

The Liu-Yau mass

Definition 3

Given a spacelike codimension-two topological sphere S in an n-dimensional spacetime with spacelike mean curvature vector, the Liu-Yau type mass is defined as

$$
M_{LY}(S) := \frac{1}{\Omega_{n-2}(n-2)} \int_S |\tilde{\mathbf{H}}| - |\mathbf{H}| \, \mathrm{d}\sigma \tag{11}
$$

where σ is the induced volume form on S, \tilde{H} is the mean curvature vector of S as embedded in \tilde{M}^n .

つひひ

The SSL of the LY mass

Theorem 3

Let S_r be the family of conformally flat light-cone cuts shrinking towards p defined with respect to (p, e_0) in an n-dimensional spacetime, the limits of the Liu-Yau mass as r goes to 0 are

1 In non-vacuum,

$$
\lim_{r \to 0} r^{-(n-1)} M_{LY}(S_r) = \frac{\Omega_{n-2}}{n-1} T(e_0, e_0)|_p.
$$
 (12)

2 In vacuum or the stress tensor \overline{T} vanishes in an open set containing p,

$$
\lim_{r \to 0} r^{-(n+1)} M_{LY}(S_r) = \mathcal{W}|_{p} - \frac{(n^2 - n - 3)E^2|_{p}}{12(n^2 - 1)(n - 2)^2(n - 3)^2}.
$$
 (13)

Remark 3

In 4D, the vacuum SSL's of the Liu-Yau mass and the Wang-Yau mass have the same form. The same state of the same state of the same state of the [P](#page-15-0)[.P](#page-13-0)[.Yu](#page-14-0) ['](#page-15-0)[07](#page-9-0)[,](#page-10-0) [Che](#page-16-0)[n,](#page-9-0) [W](#page-10-0)[an](#page-16-0)[g &](#page-0-0) [Yau](#page-16-0) '15

Jinzhao Wang (ETH) [arXiv:2001.08485](#page-0-0) PSR2020 10 / 10

Gravitoelectromagnetism

- In vacuum ($Ric = 0$), the Riemann tensor equals to the Weyl tensor which governs the pure gravitational field behaviors.
- Given (p, e_0) , the Weyl tensor C in four dimensions can be decomposed into electro-magnetic components.

$$
E:=C(\cdot,e_0,\cdot,e_0) \hspace{5mm} B:=\star C(\cdot,U,\cdot,U) \hspace{5mm} \left(\star C_{abcd}=\frac{1}{2}\epsilon_{ab}{}^{ef}C_{efcd}\right)
$$

- Physically, E is responsible for the gravitational induction phenomena like tidal distortions, and B together with E is responsible for gravitational radiation, in particular upon a FLRW background.
- In higher dimensions, similar decompositions can be made. One obtains the electro-electro part E , the electric-magnetic part H and the magnetic-magnetic part D.

∽≏∩

Gravitoelectromagnetism

The Bel Robinson tensor is defined with the Weyl tensor C

$$
Q_{abcd} = C_{a e c f} C_b{}^e{}_d{}^f + \star C_{a e c f} \star C_b{}^e{}_d{}^f \quad (n = 4)
$$

- It is the unique tensor with the dominant property and quadratic in the Weyl tensor. It is also totally symmetric, traceless and divergence free.
- \bullet The BR superenergy density w.r.t. a timelike vector U is defined as $Q := Q(U, U, U, U) \geq 0.$
- In analogy to electrodynamics, $Q = E^2 + B^2$ and $Q(\cdot, U, U, U)$ is the super-Poynting vector.
- \bullet Imposing the dominant property, Q admits a unique generalisation in arbitrary dimensions.

$$
Q = \frac{1}{2}E^2 + \frac{1}{2}H^2 + \frac{1}{8}D^2.
$$

つひひ