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Introduction

–In the big picture we are considering the generalization from
flat phase spaces to curved non-linear phase spaces.

Areas with compact phase
spaces

Loop quantum cosmology

Non-linear sigma models

semiclassical descriptions
of finite dimensional
Hilbert spaces.

Physical motivations

Bounded quantities

dim (H) <∞
Born reciprocity symmetry
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Progress with nonlinear phase spaces.

– There has been some development in the recent years of
applications of the non-linear phase spaces in various areas .

Cosmological models

Compactified minisuperspace models [1904.11338]
Cosmological perturbation theory [1704.01934]

Connections with condensed matter models

Spin field correspondence [1612.04355]
Heisenberg XXZ model [1708.03207]

General relativistic spin systems [2008.01729]

–The eventual goal of this program is to consider
compactifications of all fields used in theoretical physics.
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Compact de-Sitter from ordinary de-Sitter

We need to compactify: C = NV
[
−H2 + Λ

]
. One possible

compactification is the following:

Cs = N
Lv

Sz
S

(
−S2

y + ΛL2
v

)
Polynomial form

Implementable in
condensed matter systems.

has the correct limiting
behavior as S →∞
Need to introduce
parameters: Lv, Lh

Sz = S
V

Lv

Sy = S

√
1− V 2

L2
v

sin

(
H
Lh

)

Sx = S

√
1− V 2

L2
v

cos

(
H
Lh

)
So that {Si, Sj} = εijkSk, and
S = LvLh.
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Quantum compact phase space cosmology

–The quantization of the constraint: Cs = N
Lv

Sz
S

(
−S2

y + ΛL2
v

)
can be done in a straight forward manner just by using the
canonical quantization up to some ordering ambiguity.

– From there the dynamics are determined by Ĉs|ψ〉 = 0. The
Hilbert space is defined as in any other system with one spin.
For S = 2~ and taking δ = Λ/L2

h we have:

Ĉs = ~3



5
3 − 12δ 0 −

√
3
2 0 0

0 7
3 − 6δ 0 0 0

−
√

3
2 0 0 0

√
3
2

0 0 0 6δ − 7
3 0

0 0
√

3
2 0 12δ − 5

3
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Semiclassical extensions

Analytic results for exact quantum compact phase space
cosmology provide some insight into how the model
behaves for S ∼ ~.
Ultimately we want to explore the model in the regime
where S � ~, and in this case the exact treatment becomes
intractable, because the constraint can’t be easily
diagonalized.

The model can still be probed in this regime by
implementing semiclassical perturbation theory, to extract
features that are most relevant when quantum effects are
weak but not ignorable.
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The canonical effective methods

To analyze this canonical system at the semiclassical level, it is
most convenient to use the canonical effective methods. That is
we formulate the quantum system in term of expectation values
and moments rather than states on Hilbert spaces.

Hq = 〈Ĥ〉 = Hc(~S) +Q(~S,∆)

{
〈Â〉, 〈B̂〉

}
=

1

i~

〈[
Â, B̂

]〉
∆(Sai S

b
j ) = 〈δŜai δŜbj 〉weyl
∼ O(~(a+b)/2)

Ḟ (~S,∆) = {F,Hq}
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Classical deparametrization

–Given the kinematics we need to analyze the dynamics.

–The classical constraint is

Cs =
N

Lv

Sz
S

(
−S2

y + ΛL2
v

)
Deparametrization is non trivial
because there are no standard
matter sources. Introduce a
scalar field such that pφ = ΛL2

v:
{φ, pφ} = 1.

–Treating φ as an internal time,
we can deparametrize and treat
pφ as a Hamiltonian

pφ = S2
y .
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Semiclassical deparametrization

We can quantize in two different ways; before or after gauge
fixing. Quantizing before gauge fixing implies a set of
constraints.

Cq = 〈Ĉs〉 = Sz
(
S2
y − pφ

)
+ Sz∆(S2

y)

+ 2Sy∆(SzSy)−∆(Szpφ) +O(~3/2)

CSi = 〈ĈsδŜi〉 = 2SySz∆(SySi)− Sz∆(pφSi)

Cpφ = 〈Ĉsδp̂φ〉 = 2SzSy∆(Sypφ)− Sz∆(p2φ)

Cφ = 〈Ĉsδφ̂〉 = 2SzSy∆(φSy)− Sz∆(φpφ)

Solving the constraints to leading order gives:

pφ = S2
y + ∆(S2

y) +O(~3/2)
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Perturbative solutions

–The equations of motion for the the above Hamiltonian are
given by the usual Hamilton equations: d

dφ = {•, pφ}.

–Despite being nonlinear, this system has the constants of
motion: Sy, ∆(S2

y), C1, C2, C3. Actually the system can be
solved exactly. To the leading order we have...

V (φ) ∝ Sz(φ) =
√
S2 − S2

y

[
cos (2Syφ) + ...

...+ 2Syφ [sin (2Syφ)− Syφ cos (2Syφ)]
∆(S2

y)

S2
y

]
–Perturbative corrections are resonating. Normally this would
signal the breakdown of perturbation theory, but here we only
consider φ in a finite range.
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Discussion of Bousso bound 1

It turns out that the parameter ε = ∆(S2
y)/S2

y is related to the
total number of degrees of freedom in the system.

ε =
∆(S2

y)

S2
y

≈ ∆(H2)

H2
∼

∆(R2
H)

R2
H

On the other hand

∆(R2
H)

R2
H

∼
l2p

1/Λ
∼

l2p
AH
≤ 1

Ndof

An independent estimation of ε can therefore give us insight
into the Bousso bound.
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Discussion of Bousso bound 2

–By estimating ∆(S2
y)/S2

y from principles of quantum
mechanics, we can obtain an independent estimate of ε.
– Considering the state of the universe as a condensate of
qubits: |ψ〉 = |+ ...+〉 and assuming Lh ∼ l−1

p we can calculate
ε.

ε ∼

〈
ψ
∣∣∣δŜ2

y

∣∣∣ψ〉
S2
y

=
1
2~S
ΛL2

v

=
1

ΛS

Comparing this with our previous estimate we find:

Nbulk ∼
S

~
=

1

Λ2l4p
� AH

l2p

Much larger than what would be expected from the Bousso
bound.
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Conclusion

Using canonical effective methods Quantum fluctuations of
a compact phase space cosmology were analyzed in detail.
Semiclassical perturbations were found to be unstable over
very long times scales.

Using the quantum fluctuations, the Bousso bound was
analyzed and found to be violated.

State of the universe might not be semiclassical in the sense
that ∆(SiSj) � ~.
Compactification scale might not be planckian.
Hubble horizon might have a fractal like structure [Barrow,
2020]
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Thanks!
Any questions?
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