GSoC End of Program Presentation
(2020 Sep. 3)

Keisuke Kamahori

Who am | & What am | doing

Keisuke Kamahori (https://github.com/kamahori)

Sophomore at University of Tokyo

Working on pre-conditioners of compression algorithms as a GSoC student.
(Mentors: Oksana Shadura, Brian Paul Bockelman, Ken Bloom)

1. Integrate Bitshuffle in ROOT’s compression layer
2. Performance benchmarks

https://github.com/kamahori

Bitshuffle

e A possible pre-conditioner for ROOT I/O

e Transpose input bytes prior to applying the compression algorithm (LZ4)

e Improve compression performance for typed binary data (size and speed),
especially when adjacent values are highly correlated

Bitshuffle in a nutshell:

11010010 L 0 5 1 8 [9§
11010011 --> 0000 1111
11010100 0000 0011

11010101 1100 1010

Progress about LZ4+BS

Fixed a bug about LZ4+BS decompression
Added appropriate trampoline between SSE/AVX2 (enabled vectorisation)
Wrote performance benchmarks in rootbench.git
In final implementation,
o Source size must be the multiple of 4 in order for BS to work properly
(code)
o Then take comparison approach: try with both LZ4 / LZ4BS, and
choose better one
o Compression speed is a bit reduced: ~30% longer at most
o Decompression speed is almost the same as LZ4

https://github.com/kamahori/root/blob/lz4-bitshuffle/core/lz4/src/ZipLZ4.cxx#L138

Performance in TTree

Red: ZLIB / Green: LZ4 /

/ Black: ZSTD

D/9

LHCD file ATLAS file
1le8 (lhcb_B2ppKK2011_md_noPIDstrip.root) 1e9 (gg_data-zstd.root)
1351 ¢788/0 $Z4/1
2.6 1 #3416
1.30 4 ¢z
2.4 A
’TB‘ 1.251 §
B 2224
Y 1.204 4
N N TD/1
o © 2.0 A &STD/6 &TO guB)
2 ° #-B/6
@ 1159 2
< L 184
£ £
§ 110 RO € 16
&#LIB/6 gLIB/9
1.05 4 &STD/6 ¢ 1.4
1.00 4 &STD/9 1.2 &
3000 3200 3400 3600 3800 55000 57500 60000 62500 65000 67500 70000 72500
decompression time (ms) decompression time (ms)

NanoAOD file
1e9 (Run2012B_DoubleMuParked.root)
2416 U749
4.6 4
4.4 4
)
5424
X
? 4.0 4
o
2
v 381 TD/6
g F. &LI1B/9
S 3.6 -
FLIB/1¢Z4/1
3.4 4
3.2 4 &STD/9

&1

50000 55000 60000 65000 70000 75000 80000 85000 90000

D ——

decompression time (ms)

D/1

Performance in RNTuple

le8 Filesize of hldst Comparison of RNTuple decompression speed
3500000

3000000 -

2500000 A

2000000

Size (byte)

1500000 -

1000000 -

500000 -

Tlree Tiree Tiree Tiree Tiree Tiree RNTuple RNTuple RNTuple RNTuple RNTuple RNTuple
GF G AT T IR uiome T pe e TAYRS ML MTMRAC demn Led L2485 Z31D ZL18 EZHIA
(real time) (realtime) (realtime) (realtime) (realtime)

1e9 Filesize of ATLAS in RNTuple 1le7 Decompression Time of ATLAS in RNTuple

30 4

Size (byte)
Time (us)

1Z4 1za8s zsTD 2us 1ZMA Uncomp 1za 1zaBS zsTD zus 1ZMA

Compression Ratio by Branch / Page (data)

e Those consist only of small & positive ints have great compression ratio in
LZ4BS
o There are many consecutive zeros when transposed!

e Floats tend to have worse compression ratio than ints
o Maybe because mantissa bytes are unlikely to correlate

e Bools have bad compression ratio
o Because adjacent bytes are unlikely to correlate

https://gist.github.com/kamahori/50700d9d9426af6303982e36b2c45077

Final report

More details in GSOC final report:

e https://kamahori.github.io/gsoc2020/

Contacts:

Keisuke Kamahori [keisuke1258 @gmail.com]

https://kamahori.github.io/gsoc2020/
https://mmm.cern.ch/owa/redir.aspx?C=0Nyj6ZdDflgni4s5HnD12Vxkab5iXOW7Q_Q8d16d2POWVnqrI0_YCA..&URL=mailto%3akeisuke1258%40gmail.com

