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Who am | & What am | doing

Keisuke Kamahori (https://github.com/kamahori)

Sophomore at University of Tokyo

Working on pre-conditioners of compression algorithms as a GSoC student.
(Mentors: Oksana Shadura, Brian Paul Bockelman, Ken Bloom)

1. Integrate Bitshuffle in ROOT’s compression layer
2. Performance benchmarks


https://github.com/kamahori

Bitshuffle

e A possible pre-conditioner for ROOT I/O

e Transpose input bytes prior to applying the compression algorithm (LZ4)

e Improve compression performance for typed binary data (size and speed),
especially when adjacent values are highly correlated

Bitshuffle in a nutshell:

11010010 L 0 5 1 8 [ 9§
11010011 --> 0000 1111
11010100 0000 0011

11010101 1100 1010



Progress about LZ4+BS

Fixed a bug about LZ4+BS decompression
Added appropriate trampoline between SSE/AVX2 (enabled vectorisation)
Wrote performance benchmarks in rootbench.git
In final implementation,
o Source size must be the multiple of 4 in order for BS to work properly
(code)
o Then take comparison approach: try with both LZ4 / LZ4BS, and
choose better one
o Compression speed is a bit reduced: ~30% longer at most
o Decompression speed is almost the same as LZ4


https://github.com/kamahori/root/blob/lz4-bitshuffle/core/lz4/src/ZipLZ4.cxx#L138

Performance in TTree
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Performance in RNTuple
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Compression Ratio by Branch / Page (data)

e Those consist only of small & positive ints have great compression ratio in
LZ4BS
o There are many consecutive zeros when transposed!

e Floats tend to have worse compression ratio than ints
o Maybe because mantissa bytes are unlikely to correlate

e Bools have bad compression ratio
o Because adjacent bytes are unlikely to correlate


https://gist.github.com/kamahori/50700d9d9426af6303982e36b2c45077

Final report

More details in GSOC final report:

e https://kamahori.github.io/gsoc2020/

Contacts:

Keisuke Kamahori [keisuke1258 @gmail.com]
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