
GSoC 2020 - TMVA PyTorch Interface

Why TMVA PyTorch Interface?

● Ease of use

● Ease of debugging

● Power & Flexibility to user.

● PyTorch prevalent in both industry and research.

Setup

void MethodPyTorch::Train() {

 /* Setup parameters

 * Setup training alternatives to callbacks like keras

 *

 * Store trained model to file (only if option 'SaveBestOnly' is NOT activated,

 * because we do not want to override the best model checkpoint)

 *

 * Load PyTorch model from checkpoint .tar file or .pt/.pth file

 * Give option of using state dict or whole model to load depending on what type

 of model is saved

 */

 // Load initial model or already trained model

 // Start model training

}

Train

Tests
int testPyTorchClassification(){
 /*

 * Load PyTorch model & Build model from python file

 * Setup PyMVA and factory & Load data

 * Book and train method

 * Setup reader

 * Get mean response of method on signal and background events

 * Check whether the response is obviously better than guessing

 */

int testPyTorchMulticlass(){
 /*

 * Load PyTorch model & Build model from python file

 * Setup PyMVA and factory & Load data

 * Book and train method

 * Setup reader

 * Get mean response of method on signal and background events

 * Check whether the response is obviously better than guessing

 */

int testPyTorchRegression(){
 /*

 * Load PyTorch model & Build model from python file

 * Setup PyMVA and factory & Load data

 * Book and train method

 * Setup reader

 * Get mean response of method on signal and background events

 * Check whether the response is obviously better than guessing

 */

Results & Plots

Conclusion

● Achieved all the targets proposed before GSoC

● Developed a fully functional PyTorch Interface in TMVA

● Implemented tests

● Implemented tutorials

● PR #5757 & #6273 (Major GSoC Contributions)

Thank You
Blog: https://anirudhdagar.github.io/gsoc/

