
Enable Modules
on Windows

Vaibhav Garg
Google Summer of Code’ 20 | CERN-HSF | Project ROOT

Mentors:
Vassil Vassilev & Bertrand Bellenot

Modules

What are they?
● Software is built using libraries (system + third-party).

● In C, we access the libraries using #include <SomeLib.h>

● Modules provide an alternate, simple way to access libraries.

Benefits?
● Better compile-time scalability.

● Elements problems inherent to using the C preprocessor to access

the API of a library.

Why switch?

Problems with #include

● Compile-time scalability.

○ Every time a header is included, it’s contents need to be parsed.

○ For example, say, you have a project with M translation units

each having N header files in each unit, the compiler needs to

perform M x N level of work.

○ This is worse in C++, as support for templates forces a large

amount of code in each header.

Why switch?

Problems with #include

● Compile-time scalability.

● Fragility

○ #include directive is treated as textual inclusion.

○ They are, therefore, subject to any active macro definitions at

the time of inclusion.

○ If any of the active macro definitions happens to collide with a

name in the library, it causes failures.

○ Workarounds possible, ex: Include guards.

How do Modules solve these
issues?
Semantic Import

import std.io ; // pseudo-code

Modules improve access to the API of software libraries by

replacing the textual preprocessor inclusion model with a

more robust, more efficient semantic model.

There is only a minor change in the user’s perspective, but the

import declarations behave quite differently.

C++ Modules in ROOT

● The ROOT v6.16 release came with a preview of the

module technology.

● C++ Modules are default in ROOT, starting from v6.20 in

UNIX and v6.22 in OS X.

● My project aimed to extend the support of C++ Modules

of ROOT to Windows.

Why is Windows different?

● Windows uses MSVC (Microsoft Visual C++), instead of

commonly used GCC in Unix based systems.

● MSVC has an absence of C99 support.

● Also, several GCC specific headers are not present in

MSVC. Ex: bits/allocator.h and likewise.

● MSVC allows many invalid constructs in class templates

that Clang has historically rejected.

Major Changes

● New Modulemap files for Standard Library of Windows

● Merge Two Decl’s successfully when Inheritable

attributes are present. (Clang)

● Teach DynamicLibraryManager to recognise symbols in

COFF Object Files

● A lot of other fixes here and there.

Results

● We are now able to successfully build ROOT on

Windows with C++ modules enabled.

● 65% of the tests are currently passing.

● Some more minor issues are needed to be fixed in order

to make Modules default on Windows.

Thank you!

