Roman Pots Lessons Learnt at the LHC Technical Aspects

Maciej Trzebiński

Institute of Nuclear Physics Polish Academy of Sciences

EIC Workshop – Promoting Collaboration on the Electron-Ion Collider

8th October 2020

Physics of Interest

■ hard – perturbative approach is valid; small cross-sections:

Assumption: one would like to measure diffractive interactions at the LHC.

Assumption: one would like to measure diffractive interactions at the LHC. Typical diffractive topology: a gap in rapidity is present between proton(s) and central system and one or both interacting proton stay intact.

Assumption: one would like to measure diffractive interactions at the LHC. Typical diffractive topology: a gap in rapidity is present between proton(s) and central system and one or both interacting proton stay intact.

detector

Assumption: one would like to measure diffractive interactions at the LHC. Typical diffractive topology: a gap in rapidity is present between proton(s) and central system and one or both interacting proton stay intact.

M. Trzebiński

ATLAS Roman Pots

acceptance of central

detector

3/20

away from the interaction

point

Intact protons \rightarrow natural diffractive signature \rightarrow usually scattered at very small angles (µrad) \rightarrow detectors must be located far from the Interaction Point.

Intact protons \rightarrow natural diffractive signature \rightarrow usually scattered at very small angles (µrad) \rightarrow detectors must be located far from the Interaction Point.

- Absolute Luminosity For ATLAS
- 240 m from ATLAS IP
- soft diffraction (elastic scattering)
- special runs (high β^* optics)
- vertically inserted Roman Pots
- tracking detectors, resolution:

 $\sigma_x = \sigma_y = 30 \ \mu m$

Intact protons \rightarrow natural diffractive signature \rightarrow usually scattered at very small angles (µrad) \rightarrow detectors must be located far from the Interaction Point.

- Absolute Luminosity For ATLAS
- 240 m from ATLAS IP
- soft diffraction (elastic scattering)
- special runs (high β^* optics)
- vertically inserted Roman Pots
- tracking detectors, resolution: $\sigma_x = \sigma_y = 30 \ \mu m$

- ATLAS Forward Proton
- 210 m from ATLAS IP
- hard diffraction
- nominal runs (collision optics)
- horizontally inserted Roman Pots
- tracking detectors, resolution: $\sigma_x = 6 \ \mu m, \ \sigma_y = 30 \ \mu m$
- timing detectors, resolution: $\sigma_t \sim 25 \text{ ps}$

Intact protons \rightarrow natural diffractive signature \rightarrow usually scattered at very small angles (µrad) \rightarrow detectors must be located far from the Interaction Point.

- Absolute Luminosity For ATLAS
- 240 m from ATLAS IP
- soft diffraction (elastic scattering)
- special runs (high β^* optics)
- vertically inserted Roman Pots
- tracking detectors, resolution: $\sigma_x = \sigma_y = 30 \ \mu m$

- ATLAS Forward Proton
- 210 m from ATLAS IP
- hard diffraction
- nominal runs (collision optics)
- horizontally inserted Roman Pots
- tracking detectors, resolution: $\sigma_x = 6 \ \mu m, \ \sigma_y = 30 \ \mu m$
- timing detectors, resolution: $\sigma_t \sim 25 \text{ ps}$

Similar devices @ IP5: CMS-TOTEM.

LHC beam

thin window and floor (300 μ m)

thin window and floor (300 μ m)

M. Trzebiński

0.2

°ò

500

100

0 0 08 geometric acceptance [%]

20 ۵.

√s = 13 TeV $\beta^* = 0.4 \text{ m}$ beam 1 TCL4 @ 15σ TCL5 @ 35σ

diffractive protons thin window and floor (300 $\mu \rm{m})$

diffractive protons thin window and floor (300 $\mu \rm{m})$

diffractive protons thin window and floor (300 μ m)

diffractive protons thin window and floor (300 $\mu \rm{m})$

diffractive protons thin window and floor (300 $\mu \rm{m})$

ATLAS Roman Pots

diffractive protons thin window and floor (300 $\mu \rm{m})$

diffractive protons thin window and floor (300 $\mu \rm{m})$

5/20

diffractive protons thin window and floor (300 $\mu \rm{m})$

5/20

ATLAS Roman Pots

diffractive protons thin window and floor (300 $\mu \rm{m})$

5/20

diffractive protons thin window and floor (300 $\mu \rm{m})$

5/20

ATLAS Roman Pots

diffractive protons thin window and floor (300 $\mu \rm{m})$

diffractive protons thin window and floor (300 $\mu \rm{m})$

- At the interaction point proton (IP) is fully described by six variables: position (x_{IP}, y_{IP}, z_{IP}), angles (x'_{IP}, y'_{IP}) and energy (E_{IP}).
- They translate to unique position at the forward detector (*x*_{DET}, *y*_{DET}, *x*'_{DET}, *y*'_{DET}).

- At the interaction point proton (IP) is fully described by six variables: position (x_{IP}, y_{IP}, z_{IP}), angles (x'_{IP}, y'_{IP}) and energy (E_{IP}).
- They translate to unique position at the forward detector (x_{DET}, y_{DET}, x'_{DET}, y'_{DET}).
- Idea: get information about proton kinematics at the IP from their position in the AFP detector.

- At the interaction point proton (IP) is fully described by six variables: position (x_{IP}, y_{IP}, z_{IP}), angles (x'_{IP}, y'_{IP}) and energy (E_{IP}).
- They translate to unique position at the forward detector (*x*_{DET}, *y*_{DET}, *x*'_{DET}, *y*'_{DET}).
- Idea: get information about proton kinematics at the IP from their position in the AFP detector.
- Exclusivity: kinematics of scattered protons is strictly connected to kinematics of central system.

- At the interaction point proton (IP) is fully described by six variables: position (x_{IP}, y_{IP}, z_{IP}), angles (x'_{IP}, y'_{IP}) and energy (E_{IP}).
- They translate to unique position at the forward detector (*x*_{DET}, *y*_{DET}, *x*'_{DET}, *y*'_{DET}).
- Idea: get information about proton kinematics at the IP from their position in the AFP detector.
- Exclusivity: kinematics of scattered protons is strictly connected to kinematics of central system.
- Detector resolution play important role in precision of such method.

491460; ATLAS-TDR-024

AFP: Silicon Trackers (SiT)

- Four detectors in each station.
- Technology: slim-edge 3D ATLAS IBL pixel sensors bonded with FE-I4 readout chips.
- Pixel size: $50 \times 250 \ \mu \text{m}^2$.
- Tilted by 14^0 to improve resolution in *x*.
- Resolution: \sim 6 μ m in x and \sim 30 μ m in y.
- Trigger: majority vote (2 out of 3; two chips in FAR station are paired and vote as one).

From JINST **11** (2016) P09005; JINST **12** (2017) C01086

ALFA: Scintillating Fibres (SciFi)

- Near stations: 237 m from ATLAS Interaction Point (IP).
- Far stations: till 2014 241 m, after 2014 245 m from ATLAS IP.
- Each station contains:
 - four outer detectors (OD) for precise alignment,
 - two main detectors (MD):
 - 10 + 10 layers of 64 fibres,
 - UV geometry,
 - trigger.
- More details in: JINST 11 (2016) P11013.

How to Reduce Physics Background?

 Pile-up – multiple collisions during one bunch crossing (mostly min-bias).

 signal
 background
 background

How to Reduce Physics Background?

Pile-up – multiple collisions during one bunch crossing (mostly min-bias).signalbackgroundbackground

Idea:

- measure difference of time of flight of scattered protons, $(t_A t_C)/2$
- compare to vertex reconstructed by ATLAS, $(t_A - t_C) \cdot c/2 - z_{ATLAS}$

Time-of-Flight Detectors (ToF)

ToF LQbars

Setup and performance shown above are from testbeam (Opt. Express 24 (2016) 27951, JINST 11 (2016) P09005).

- 4x4 quartz bars oriented at the Cherenkov angle with respect to the beam trajectory.
- Light is directed to Photonis MCP-PMT.
- Expected resolution: ${\sim}25$ ps.
- Installed in both FAR stations.

(some) Lessons Learnt at the LHC

- Pots are installed far away from collision point latency is a serious factor to be considered during design.
- These devices are small, but complete particle detectors:
 - connection/access to parts/services must be carefully considered due to very confined space,
 - variety of sub-groups which must cooperate makes coordination challenging.
- There is no such thing as 'too much spares'.
- As they are installed in the accelerator tunnel, access is more constraint than in case of main detector.
- Roman pots are special devices as they 'belong' to experiment and accelerator:
 - cooperation with various accelerator groups (optics, machine protection, collimators, etc.) is a must,
 - (some) failures during the operation may impact not only data taking, but can interlock accelerator,
 - an 'on site' expert is a must during data-taking.
- Accelerator settings (like optics) may be, to great extent, tweaked in order to enhance data-taking possibilities.
- Automatization of precesses (like pot insertion and extraction) is a huge manpower- and time-saver.
- There is not such thing as too much metrology be ready for surprises such as pot rotation during insertion!
- A well defined share of responsibilities and a long-term support defined *e.g.* in Memorandum of Understanding is important.
- Core experts should be employed on long-term contracts. Students, PhDs or post-docs are of great help, but building full teams based on them creates issues related to knowledge transfer.

Backup

Proton trajectory is determined by the LHC magnetic field.

Proton trajectory is determined by the LHC magnetic field.

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

Proton trajectory is determined by the LHC magnetic field.

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

collision optics, ALFA and AFP: trajectory due to p_y

Proton trajectory is determined by the LHC magnetic field.

LHC structure and proton trajectories in vicinity of IP1; $\sqrt{s} = 13 \text{ TeV}$; $\beta^* = 0.4 \text{ m}$; beam 1; $\theta_a = -185 \mu \text{rad}$

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

collision optics, ALFA and AFP: trajectory due to p_v

special high- β^* optics, ALFA:

improve acceptance in $p_T = \sqrt{px^2 + py^2}$

M. Trzebiński

 $\xi = 0.0$

 $\xi = 0.08$

 $\xi = 0.16$

p_=1.0 GeV p,=0.5 GeV

p_=0.0 GeV

p_=-0.5 GeV

p_=-1.0 GeV

p_=160 MeV

p =80 MeV

___ p_= 0 MeV

_ _ . p_=-80 MeV

...... p_=-160MeV

 $--\xi = 0.04$

ξ = 0.12

s (m)

s [m]

s [m]

Geometric Acceptance for Various Optics

Ratio of the number of protons with a given relative energy loss (ξ) and transverse momentum (p_T) that crossed the active detector area to the total number of the scattered protons having ξ and p_T .

14/20

AFP: Cooling System

• Technology: Vortex Tube.

- Staged approach:
 - precooling of input air in AirCooler box,
 - cooling with Vortex tube installed on RP.
- Efficient cooling: temp. down to -30 ⁰C with detectors powered on.
- Operational requirements: -10 ⁰C.
- Online temperature regulation with PID algorithm.

- Each RP is kept under secondary vacuum:
 - reduce stress and limit "bulge" of thin window,
 - allows cooling below 0 deg. (prevents icing of detectors).
- Two vacuum pumps (P1, P2) are located in alcoves on both sides (RR13 and RR17).
- Four operating modes:
 - mode 1: alternating between P1 and P2,
 - mode 2: use P1, if problem switch to P2,
 - mode 3: use P2, if problem switch to P1,
 - mode 4: use both pumps.
- Overall leak rate below 0.3 mbar / min.

Pot Motion and Controls

- Positions of IN, OUT, and HOME switch and Electrical Stop were set according to the laser measurements.
- Pot position is precisely calibrated (few μ m) before every insertion w.r.t. electrical switch.
- In case of emergency (*i.e.* loss of power) retraction with springs to the HOME position.
- Mechanical stops installed to prevent damage of fragile electrical stop.

Temperature sensors (NTC):

- each station:
 - each SiT detector (on flex),
 - ToF (on amplifiers),
 - heat exchanger (NTC + PT1000),
 - pot wall (up + under second thin window),
 - flange (cold output of Vortex tube + HV for ToF),
 - LTB.
- VReg. crate.
- AirCooler box:
 - $\bullet\,$ hot output of VT,
 - cold output of VT,
 - output of box.

Radiation sensors:

- bottom of each pot,
- VReg. crate,
- far station LTB,
- RR17 alcove.

Detector Control System

DCS is responsible for coherent and safe operation of the detector:

- provides tools for bringing the detector into desired operational state, monitors its parameters, signals any abnormal behaviour and performs actions,
- defined subset of detector parameters is stored in data bases for later inspections,
- graphical user interfaces allow overall detector operation and visualisation.

AFP is fully integrated with ATLAS DCS system.

AFP: Trigger and Data Acquisition System

Architecture of AFP TDAQ:

- High Speed Input Output board (HSIO): DAQ board with many high-speed and low-speed I/O channels, Xilinx Artix 200 FPGA, mezzanines with ATLAS TTC and RCE (Reconfigurable Cluster Element),
- frontends are configured at 40 Mbps, the data are readout at 160 Mbps.
- AFP is fully integrated with ATLAS TDAQ system:
 - AFP trigger signals are generated, combined (OR, AND, majority vote logics), synchronized with LHC clock and send to ATLAS Central Trigger Processor,
 - trigger signals are sent via fast air-core cables and reach CTP within the standard ATLAS latency (85 BCXs).

