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sics of Interest

B hard — perturbative approach is valid; small cross-sections:
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Diffraction: Natural ways to seek for diffraction:
@ colour singlet exchanged, @ rapidity gaps,

@ Pomeron (QCD = two gluons + '”)I._ASR o ® forward protons.
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Measurement Methods

Assumption: one would like to measure diffractive interactions at the LHC.
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Typical diffractive topology: a gap in rapidity is present between proton(s) and
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Assumption: one would like to measure diffractive interactions at the LHC.
Typical diffractive topology: a gap in rapidity is present between proton(s) and
central system and one or both interacting proton stay intact.
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Method 1 (rapidity gap):

+ usual method of
diffractive pattern
recognition

no need to install
additional detectors

gap may be killed by e.g.

particles from pile-up

gap may be outside
acceptance of central

detector
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l:‘ - tracking detectors
I:‘ - calorimeters
. - muon chambers

Method 2 (forward protons):
+ protons are directly

+

measured

can be used in pile-up
environment

protons are scattered at
small angles (few prad)

additional “forward”
detectors are needed far
away from the interaction
point
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orward Detectors @ IP1 (ATLAS)

Intact protons — natural diffractive signature — usually scattered at very
small angles (urad) — detectors must be located far from the Interaction Point.
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beam line
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ard Detectors @ IP1 (ATLAS)

Intact protons — natural diffractive signature — usually scattered at very
small angles (urad) — detectors must be located far from the Interaction Point.
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ATLAS

ALFA AFP peam line jet

large distance

beam line

AFP Al

large distance

ALFA
Absolute Luminosity For ATLAS
240 m from ATLAS IP
soft diffraction (elastic scattering)
special runs (high 8 optics)
vertically inserted Roman Pots

tracking detectors, resolution:
ox =0y, =30 um
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rd Detectors @ IP1 (ATLAS)

Intact protons — natural diffractive signature — usually scattered at very
small angles (urad) — detectors must be located far from the Interaction Point.
ATLAS

ALFA AFP peam line jet beam line AFP  ALFA

p H—

large distance large distance

- L '

ALFA AFP

@ Absolute Luminosity For ATLAS @ ATLAS Forward Proton
@ 240 m from ATLAS IP @ 210 m from ATLAS IP
o soft diffraction (elastic scattering) o hard diffraction
o special runs (high 8* optics) @ nominal runs (collision optics)
o vertically inserted Roman Pots @ horizontally inserted Roman Pots
@ tracking detectors, resolution: @ tracking detectors, resolution:
ox =0y, =30 um ox =6 pum, o, =30 um

@ timing detectors, resolution:
o¢ ~ 25 ps
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rd Detectors @ IP1 (ATLAS)

Intact protons — natural diffractive signature — usually scattered at very
small angles (urad) — detectors must be located far from the Interaction Point.
ATLAS

ALFA AFP peam line jet beam line AP ALFA

p H—

large distance large distance
T ALFA o AFP
Absolute Luminosity For ATLAS ATLAS Forward Proton
240 m from ATLAS IP 210 m from ATLAS IP

soft diffraction (elastic scattering) hard diffraction

special runs (high 8* optics) nominal runs (collision optics)

vertically inserted Roman Pots horizontally inserted Roman Pots

tracking detectors, resolution: tracking detectors, resolution:
ox =0y, =30 um ox =6 um, o, =30 um

@ timing detectors, resolution:
o¢ ~ 25 ps
Similar devices @ IP5: CMS-TOTEM.
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dvantages of Roman Pot Technology
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Advantages of Roman Pot Technology

LHC beam

thin window and floor (300 pm)
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tages of Roman Pot Technology

shadow of TCL4 and TCL5 LHC beam Geometric acceptance:
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shadow of TCL4 and TCL5 Geometric acceptance:
collimators LHC beam
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shadow of TCL4 and TCL5 LHC beam
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tages of Roman Pot Technology

shadow of TCL4 and TCL5 LHC beam Geometric acceptance:

collimators
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thin window and floor (300 pm)
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roton Tagging or Position Measurement?

Interaction Point . . Detector
I LHC magnetic lattice . .
(xu:' Yipr Zips Xips ¥ips E\p) (XDET‘ Yoer Xperr ¥ DET)

Parameterization _
- Unfolding
@ At the interaction point proton (IP) is
fully described by six variables:

position (xip, yip, zip), angles (xjp,
yip) and energy (Ejp).
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Parameterization _
{:’1? - Unfolding
@ At the interaction point proton (IP) is
fully described by six variables:
position (xip, yip, zip), angles (x/p,
yip) and energy (Ejp).

@ They translate to unique position at
the forward detector (xper, ypeT,
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roton Tagging or Position Measurement?

M. Trzebinski

Interaction Point

I LHC magnetic lattice
(xu:' Yipr Zips X'ips Vs E\p)

Detector

(%er Yoer X'per ¥per)

Parameterization
- Unfolding

At the interaction point proton (IP) is
fully described by six variables:
position (xip, yip, zip), angles (xjp,
yip) and energy (Ejp).

They translate to unique position at
the forward detector (xper, ypeT,
XDET+ YDET)-

Idea: get information about proton
kinematics at the IP from their
position in the AFP detector.

ATLAS Roman Pots
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on Tagging or Position Measurement?

Interaction Point . . Detector
I LHC magnetic lattice . .
(xu:' Yipr Zips Xips ¥ips E\P) (XDET‘ Yoer Xperr ¥ DET)

Parameterization _
{:j? - Unfolding

@ At the interaction point proton (IP) is
fully described by six variables:
position (xip, yip, zip), angles (xjp,
yip) and energy (Ejp).

@ They translate to unique position at
the forward detector (xper, ypeT,
XDET+ YDET)-

@ |dea: get information about proton

kinematics at the IP from their
position in the AFP detector.

Vs=14TeV,z=204m,$*=055m
r = detector resolution, 5:’ =10pum, 6‘: =30um
| == multiple scattering, &, .= 1prad
- - vertex not known, 8, = 12um

: —e— all effects

-~
o

reconstruction resolution, 3 [GeV]
[8,] o
T

o Exclusivity: kinematics of scattered 0" o4 o5
protons is strictly connected to proton relative energy loss, &
kinematics of central system. From ISRN High Energy Physics (2012)

491460; ATLAS-TDR-024
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on Tagging or Position Measurement?

Interaction Point . . Detector
I LHC magnetic lattice . .
(xu:' Yipr Zips Xips ¥ips E\P) (XDET‘ Yoer Xperr ¥ DET)

Parameterization _
{:j? - Unfolding
@ At the interaction point proton (IP) is
fully described by six variables:
position (xip, yip, zip), angles (x/p,
yip) and energy (Ejp).

@ They translate to unique position at
the forward detector (xper, ypeT,

Vs=14TeV,z=204m,$*=055m
r = detector resolution, 5:’ =10pum, 6‘: =30um
| == multiple scattering, &, .= 1prad
- - vertex not known, 8, = 12um

: —e— all effects

-~
o

XDET+ YDET)- I
@ |dea: get information about proton
kinematics at the IP from their

position in the AFP detector.

reconstruction resolution, 3 [GeV]
[8,] o
T

o Exclusivity: kinematics of scattered 0" o4 o5
protons is strictly connected to proton relative energy loss, &
kinematics of central system. From ISRN High Energy Physics (2012)

o Detector resolution play important role 491460; ATLAS-TDR-024

in precision of such method.
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Silicon Trackers (SiT)

@ Four detectors in each station.

@ Technology: slim-edge 3D ATLAS IBL pixel
sensors bonded with FE-14 readout chips.

Pixel size: 50x250 pm?.

Tilted by 14° to improve resolution in x.

ATLAS Preliminary 5

Events [norm.]

Resolution: ~6 pm in x and ~30 pm in y.

—
7 8 9 10

Pixel hits per event

From JINST 11 (2016) P09005;

JINST 12 (2017) C01086
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Trigger: majority vote (2 out of 3; two chips in
FAR station are paired and vote as one).



ALFA: Scintillating Fibres (SciFi)

@ Near stations: 237 m from ATLAS Interaction Point (IP).

Far stations: till 2014 — 241 m, after 2014 — 245 m from ATLAS IP.
Each station contains:

o four outer detectors (OD) for precise alignment,
e two main detectors (MD):

@ 10 + 10 layers of 64 fibres,

e UV geometry,

@ trigger.

@ More details in: JINST 11 (2016) P11013.
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ow to Reduce Physics Background?

ile-up — multiple collisions during one bunch crossing (mostly min-bias).
signal background background

Exclusive Production Non-difftactive Production
jet fet

jet

D — — —

P p P P P
fet jet

jet

b
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to Reduce Physics Background?

Pile-up — multiple collisions during one bunch crossing (mostly min-bias).
signal background background

Exclusive Production Non-difftactive Production

jet

jet fet
P + P P * X b 3 + b
jet

T T
[ ATLAS Preliminary

Idea:

@ measure difference of time of
flight of scattered protons,
(ta—tc)/2

@ compare to vertex

bl

Fraction of pile-up in AFP (double tag

e —— Detector position 2 mm
reconstructed by ATLAS, 107 " pythias o
(tA - tc) : C/2 — ZATLAS 58 w‘./l T B .7;"‘”\+.MT>?IO??S\./. Ll
10 20 30 40 5

o 0 60
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Flight Dete (ToF)

ToF LQbars
BarA: BarB:

Train1: 3mm {
Train 2: 5 mm {
Train3: 5 mm |

Train 4: 5 mm {

Radiator bar

Light-guide bar ]

| 4x4 Multi-Pixel MCP-PMT

Setup and performance shown above are from testbeam (Opt. Express 24 (2016) 27951, JINST 11 (2016) P09005).

@ 4x4 quartz bars oriented at the
Cherenkov angle with respect to
the beam trajectory.

o Light is directed to Photonis
MCP-PMT.

@ Expected resolution: ~25 ps.
@ Installed in both FAR stations.

M. Trzebinski

Tracking-Timing correlation y

©

Track position - y [mm]

o » A D O N A O

bar1A  bar1B bar?A bar2B  bar3A bar3B_ bardA  bardB
Timing Channel
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essons Learnt at the LHC

M. Trzebinski

Pots are installed far away from collision point — latency is a serious factor to be
considered during design.
These devices are small, but complete particle detectors:
@ connection/access to parts/services must be carefully considered due to very confined
space,
° eriety of sub-groups which must cooperate makes coordination challenging.
There is no such thing as ‘too much spares’.
As they are installed in the accelerator tunnel, access is more constraint than in
case of main detector.
Roman pots are special devices as they ‘belong’ to experiment and accelerator:
@ cooperation with various accelerator groups (optics, machine protection, collimators,
etc.) is a must,
o (some) failures during the operation may impact not only data taking, but can
interlock accelerator,
@ an ‘on site' expert is a must during data-taking.
Accelerator settings (like optics) may be, to great extent, tweaked in order to
enhance data-taking possibilities.
Automatization of precesses (like pot insertion and extraction) is a huge
manpower- and time-saver.
There is not such thing as too much metrology — be ready for surprises such as
pot rotation during insertion!
A well defined share of responsibilities and a long-term support defined e.g. in
Memorandum of Understanding is important.
Core experts should be employed on long-term contracts. Students, PhDs or
post-docs are of great help, but building full teams based on them creates issues
related to knowledge transfer.
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Forward Proton Trajectories

Proton trajectory is determined by the LHC magnetic field.
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orward Proton Trajectories

Proton trajectory is determined by the LHC magnetic field.
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ard Proton Trajectories

Proton trajectory is determined by the LHC magnetic field.
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ic Acceptance for Various Optics

Ratio of the number of protons with a given relative energy loss (£) and transverse momentum

(pr) that crossed the active detector area to the total number of the scattered protons having &

and pr.

optics
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@ Technology: Vortex Tube.

Compressed o Staged approach:
Al I . . S
rSowaiy e precooling of input air in AirCooler box,
e cooling with Vortex tube installed on RP.
o Efficient cooling: temp. down to -30 °C
-+ .
with detectors powered on.
Cold Ai Hot Ai . .
9T vortex Spin °tA" o Operational requirements: -10 °C.
Chamber
@ Online temperature regulation with PID
algorithm.
AirCooler Box \ y ‘
i regulation line } Emain line 3| mainlline
i “xpan i i vban §
Roman pot

heat exchanger

temp.
sensor,
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o Each RP is kept under
secondary vacuum:
e reduce stress and limit
"bulge” of thin window,
o allows cooling below 0 deg.
(prevents icing of detectors).

@ Two vacuum pumps (P1, P2)
are located in alcoves on both
sides (RR13 and RR17).

@ Four operating modes:

e mode 1: alternating
between P1 and P2,

e mode 2: use P1, if problem
switch to P2,

e mode 3: use P2, if problem
switch to P1,

e mode 4: use both pumps.

@ Overall leak rate below
0.3 mbar / min.
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ot Motion and Controls
I—l Mechanical stop OUT
v

Tmm
—

£y

i, 2mm 2mm
otz
Al .‘b (Send a signal to the
1 mm d m interlock logic when
Click the pot in parking

=0 T position)

Range: 44 mm
50 mm

— — — ) o 1w meem s = BEAM AXIS

(When one of the two pins is in contact with the
printed circuit, the remaining range is ~3 mm)

l

I I Mechanical stop IN

@ Positions of IN, OUT, and HOME switch and Electrical
Stop were set according to the laser measurements.

@ Pot position is precisely calibrated (few pm) before
every insertion w.r.t. electrical switch.

@ In case of emergency (i.e. loss of power) — retraction
with springs to the HOME position.

@ Mechanical stops installed to prevent damage of fragile

electrical stop.
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Temperature sensors (NTC):
@ each station:

o each SiT detector (on flex),

o ToF (on amplifiers),

o heat exchanger (NTC +
PT1000),

e pot wall (up + under second
thin window),

o flange (cold output of Vortex
tube + HV for ToF),

e LTB.

o VReg. crate.
@ AirCooler box:

e hot output of VT,
o cold output of VT,
e output of box.

Radiation sensors:

@ bottom of each pot,
o VReg. crate,

e far station LTB,

o RR17 alcove.
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Control Syste

DCS is responsible for coherent and safe operation of the detector:
@ provides tools for bringing the detector into desired operational state,
monitors its parameters, signals any abnormal behaviour and performs

actions,
o defined subset of detector parameters is stored in data bases for later

inspections,
o graphical user interfaces allow overall detector operation and visualisation.

AFP is fully integrated with ATLAS DCS system.
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igger and Data Acquisition System

Architecture of AFP TDAQ:

@ High Speed Input Output board (HSIO): DAQ board with many
high-speed and low-speed 1/0 channels, Xilinx Artix 200 FPGA,
mezzanines with ATLAS TTC and RCE (Reconfigurable Cluster Element),

o frontends are configured at 40 Mbps, the data are readout at 160 Mbps.

AFP is fully integrated with ATLAS TDAQ system:

o AFP trigger signals are generated, combined (OR, AND, majority vote
logics), synchronized with LHC clock and send to ATLAS Central Trigger
Processor,

@ trigger signals are sent via fast air-core cables and reach CTP within the
standard ATLAS latency (85 BCXs).

Spare DTM
interface DTM/RCE TTC RMB

2x16 LVDS mezzanine mezzanine
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