Opportunities in the Forward Region

Michael Murray University of Kansas

Layout of Full IR

FF region

- ~9 m around the IP is reserved for the *central* detector
- But the far forward and far backward detector components are distributed along the beam line within ±35 m
- FF detectors constrained by machine design.

Layout of Far-Forward Region

$$x_L = \frac{p_{z, nucleon}}{p_{z, beam}}$$

B2pf dipole

Detector	Detector Position (x,z)	Angular Acceptance	Notes
ZDC	(0.96m, 37.5m)	heta < 5.5 mrad	About 4.0 mrad at $\phi \sim \pi$
Roman Pots (2 stations)	(0.845m, 26m) & (0.936m, 28m)	$0.0* < \theta < 5.0 \text{ mrad}$	$0.65 < x_L < 1.0$ $10\sigma \text{ cut}$
Off-Momentum Detectors	(0.8, 22.5m) & (0.85m, 24.5m)	$0.0 < \theta < 5.0 \text{ mrad}$	Roughly $0.4 < x_L < 0.6$
B0 Sensors (4 layers, evenly spaced)	x = 0.19m, 5.4m < z < 6.4m	$5.5 < \theta < 20.0 \text{ mrad}$	Could change a bit depending on pipe and electron quad.

Roman pots (inside pipe)

> Off-Momentum **Detectors**

B1apf dipole B1pf dipole

Q2pf quadrupole

Hadron beam

coming from IP

Q1bpf quadrupole

Q1apf quadrupole

B0apf dipole

B0pf dipole

BO Silicor Detector

EicRoot – GEANT4 VMC

What has been simulated so far?

- e+p DVCS events with proton tagging.
- e+d exclusive J/Psi events with proton or neutron tagging.
- e+Au events with neutron tagging to veto breakup and photon acceptance.
- Meson structure with neutron tagging (ep \rightarrow (π) \rightarrow e' n X).
- Currently in progress
 - e+He3 with spectator proton tagging
 - Meson structure with Lambda decays ($\Lambda \to p\pi-$ and $\Lambda \to n\pi 0$)
 - e+He4 coherent He4 tagging.

B0 Detector

B0 detector

- Acts as a conventional spectrometer allowing for tracking of charged particles in a dipole field.
- Can also be used for photon detection with pre-shower.
- 1.2 meters of total available longitudinal space potential space for both a silicon tracker and EMCAL.
- Detects particles that are scattered with high enough angle to leave the beam pipe.
- Limitations include beam pipe size and spatial asymmetry.

B0 integration

- HCAL and vacuum pumps in front of B0 tracker => high background area
- Possible additional sub-detectors are: Pre-shower or EMCAL after B0 tracker for photons detection.
- Detector maintenance

Roman Pots

$$\sigma(z) = \sqrt{\varepsilon \cdot \beta(z))}$$

- $\beta(z)$ is the RMS transverse beam size.
 - $\sigma(z)$ is the Gaussian width of the beam, ε is the emittance.
- General rule of thumb is to keep Roman Pot sensors at $\sim 10\sigma$ distance from beam to limit exposure.
 - 275 GeV 1σ = 1.79 mm (HA) / 3.58 mm (HD)
 - 100 GeV 1σ = 2.45 mm (HA) / 5.13mm (HD)
 - 41 GeV $-1\sigma = 6.14$ mm

 10σ cut places a limit on low-p_T acceptance.

Off-Momentum Detectors

- Needed for measuring protons from nuclear breakup.
- Another set of sensors on the other side can be used to detect negative pions from lambda decay.

- No low-p_⊤ cutoff sensors are outside the beam pipe.
- Very off-momentum particles can be lost in the quads.

Zero-Degree Calorimeter (ZDC)

- For detecting neutral forward-going particles (neutrons and very low energy photons)
- Acceptance limited by bore of magnet where the neutron/ photon cone has to exit.

Zero-degree Calorimeter

For detection of neutrons and photons

Acceptance:

0<θ<4.5 mrad

(Limited by bore of magnet where the neutron

cone has to exit)

ATLAS/CMS ZDC

HCal: ~2K channels

Geometric Acceptances

Neutrons:

- Assume uniform acceptance for 0<θ<4.5 mrad
 - Limited by bore of magnet where the neutron cone has to exit.
 - Up to 5.5 mrad on one side of the aperture.
- Resolutions (ZDC)
 - Assume an overall energy resolution of σ_E/E=(50%)/√E ⊕ 5%
 - Assume angular resolution of σ_θ=(3 mrad)/√E

Geometric Acceptances

Neutrons:

- Assume uniform acceptance for 0<θ<4.5 mrad
 - Limited by bore of magnet where the neutron cone has to exit.
 - Up to 5.5 mrad on one side of the aperture.
- Resolutions (ZDC)
 - Assume an overall energy resolution of σ_E/E=(50%)/√E ⊕ 5%
 - Assume angular resolution of $\sigma_{\theta}=(3 \text{ mrad})/\sqrt{E}$

Protons:

Assume uniform acceptance for 6 < θ <13 mrad (20mrad on the other side) – "B0 spectrometer"

Geometric Acceptances

Neutrons:

- Assume uniform acceptance for 0<θ<4.5 mrad
 - Limited by bore of magnet where the neutron cone has to exit.
 - Up to 5.5 mrad on one side of the aperture.
- Resolutions (ZDC)
 - Assume an overall energy resolution of σ_E/E=(50%)/√E ⊕ 5%
 - Assume angular resolution of $\sigma_{\theta}=(3 \text{ mrad})/\sqrt{E}$

Protons:

- Assume uniform acceptance for $6 < \theta < 13$ mrad (20mrad on the other side) "B0 spectrometer"
- For protons with p_z/(beam momentum) > 0.6 "Roman pots"
 - 275 GeV: Assume uniform acceptance for 0.5<θ<5.0 mrad
 - 100 GeV: Assume uniform acceptance for 0.2<θ<5.0 mrad
 - 41 GeV: Assume uniform acceptance for 1.0<θ<4.5 mrad
- For protons with 0.25<p_z/(beam momentum)<0.6 "Off-momentum Detectors"
- Assume uniform acceptance for 0.0<θ<2.0 mrad
- for $2.0 < \theta < 5.0$ mrad, only accepted for $|\phi| > 1$ radian
- Resolutions (silicon reconstruction with transfer matrix or conventional tracking).
 - pt ~ 3% for pt > 550 MeV/c, p ~ 0.5%

Resolution: Smearing Contributions

Angular divergence

- Angular "spread" of the beam away from the central trajectory.
- Gives some small initial transverse momentum to the beam particles.

Crab cavity rotation

- Can perform rotations of the beam bunches in 2D.
- Used to account for the luminosity d due to the crossing angle – allows for head-on collisions to still take place.

Detector Choices

Pixel size, transfer matrix, etc.

These effects introduce smearing in our momentum reconstruction.

DVCS Snapshot – 275 GeV

- Reconstruction includes all smearing effects.
- Bin migration present, but the slope can still be accurately extracted.

$e+d \rightarrow p + n + j/Psi$

Neutron spectator/leading proton case.

Good timing is assumed here (i.e. vertex smearing removed). If this contribution was not removed, the slope would be distorted.

Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

18x110GeV

t-reconstruction using double-tagging (both proton and neutron). Takes advantage of combined B0 + off-momentum detector coverage.

e+3He spectator proton tagging

 Acceptance looks good for double tagging the protons.

More detailed study underway.

Top row: 10x110GeV/n BeAGLE DIS

Bottom row: 10x110 GeV/n SRC

e+Pb Collisions in BeAGLE

The impact of the different detectors is studied by adding one requirement / cut after the other.

Cut1:

no neutron in ZDC

Cut2:

Cut1 + no photon E>50MeV in ZDC

Cut3:

Cut2 + no proton in Roman Pots

Cut4:

Cut3 + no proton in off-energy detector

Cut5:

Cut4 + no proton in B0

Survived event count			
1000000			
132127			
66101			
66099			
61487			
55792			

The survived events count after Cut2 with different energy cut on photon:

Survived event count			
E>150 MeV	71773		
E>50MeV	66101		
E>0 MeV	65278		

Wan Chang

Lambda Decays

Example (10x100 GeV): ~100% detection for protons from Lambda. Significant loss π —along the beam line (FFQs) due to low momentum of those pions.

All plots: accepted particles

Slide credit: Julia Furletova

Summary

- The EIC offers great opportunities to study emergent properties of QCD
- Forward region has unique challenges, opportunities.
 - Simulations look very promising but lots of R&D needed.
- Designing and building the detectors will require collaborating groups with a wide range of capabilities.
- We would be very happy to have you join!

Backup

DVCS Snapshot – 275 GeV

- MILOU 275 GeV DVCS Proton Acceptance
- Relevant detectors: Roman Pots and B0

High Divergence: smaller β^* at IP, but bigger $\beta(z=30m)$ -> higher lumi., larger beam at RP

High Acceptance: larger β^* at IP, smaller $\beta(z=30m)$ -> lower lumi., smaller beam at RP

e+d-> p + n + j/Psi

Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

18x110GeV

Proton spectator case.

Some examples of observables (light-cone momentum fraction, α), and missing-momentum (p_m).