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Outlook of the lectures

Statistics 1s a tool for doing physics. A good physicist understands their tools. Don’t just follow without
understanding, but read books and conference proceedings, go to seminars, talk to people, experiment
with the data, and understand what you are doing. Then you will succeed. And you will have a great
time!

Concluding remarks of Roger Barlow,
Asia Pacific School,Vietham, 2017,
arXiv 1905.12362v1



Introduction

Consider production of Z bosons in high energy proton-proton collisions and Z decaying to
1. The partonic level reaction is

qq — £ — pf,u—

If one measures the mass from the dimuon 4-momenta for every "event” a different mass will be
obtained, even if the experimental error is negligible. This follows from quantum mechanics that
the mass of each individual Z boson is a random number (and equals the § of ¢qq) distributed
according to Breit-Wigner distribution. The PDG value of Z7 mass and width I' are the mean
and full width at half maximum (FWHM) of the Breit-Wigner distribution.



Introduction 2

In a real detector, of course, there will be errors due to stochastic processes involved in the
detection process (e.g. the amount of charge produced in a silicon sensor by the muons). This
will "smear” the Breit-Wigner distribution. The observed distribution will be a ”convolution”
of the Breit-Wigner with another distribution describing the random fluctuations in the mea-
surement of Z mass. In addition to the random fluctuations there will be numerous sources of
"systematic uncertainties” in the measurements (e.g.).

The estimation of Z mass "fitting” the data to extract the mean and width of the Breit-
Wigner and careful estimation of the ’systematic’ and ’statistical uncertainties’. The measure-
ment of Z mass is a typical example of point estimation or parameter estimation. We will start
from a precise definition of "event” and probability in statistics and then discuss the basics of
parameter estimation.

* From the dimuon mass can we conclude we have seen a new
particle?

* How do we estimate the uncertainties in Z mass
measurement?



Topics to be covered

Probability, distribution functions, properties

Point estimation

Interval estimation

Hypothesis testing

Introduction to Monte Carlo methods
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Sample space

Definition 1: The set, S, of all possible outcomes of a particular experiment is called sample
space of the experiment.

Consider a coin toss experiment. The sample space (S) consists of two outcomes, head (H)
and tail (7"). For a pair of coin tosses, we have,

S=(HH, TT, TH, HT)
In the above cases S is ”countable”. For our Z boson production

S =(0GeV, oo GeV')



event

Definition 2: Event, an event is any collection of possible outcomes of an experiment, i..e.
any subset of S (including S' itself).

Definition 3: Complementation of A, written as A€, is the set of all elements that are not in

A.
A ={x: x ¢ A}



Example: event,complement

Event operations: Consider an electron (or a positron) hitting the electron magnetic calorime-
ter. We are interested in the charge (4 or -) and region of hit (barrel (b) or endcap (€¢)). The
sample space is

S={b", b ,€e", e}
Some events are A= {b", b=}, B={b", ¢", ¢}
Then the union (U) and intersection (N) of A and B are

AUB={b",b ", ¢ ¢}
ANB={b"}
Complement of A, A= {e", ¢}



Properties of events

Theorem 1: For any three events A, B and C' defined on a sample space 5,

a. Commutativity: AUB=BUA, ANB=BNA

b. Associativity: AU(BUC)=(AUB)UC, An(BNC)=(ANnB)NC

c. Distributive laws: AN (BUC)=(ANB)U(ANC), Au(BNC)=(AUuB)N(AUC)
d. DeMorgan’s laws: (AUB)*=A°NB°, (ANB)=A°UDB°

* Prove the above statements

Definition 4: Events A;, A,, ... are disjoint or mutually exclusive if A, NA; =¢ V 1,j

Definition 5: If A;, A, ... are pairwise disjoint on U2 A; = S then the collection A;, A, ...

form a partition of S.



Axiomatic foundation (Kolmogorov)

Definition 7: Given a sample space S and an associated sigma algebra B, a probability func-
tion is a function P with domain B that satisfies:

1. PLA)>0 VAcB
2. P(S)=1
3. if Ay, As, ... € B are pairwise disjoint, then P(3° U A;) = X2, P(A4;)

4. Axiom of finite additivity: If A € B and B € B are disjoint, then,
P(AUB) = P(A)+ P(B)
(A more general axiom is the axiom of countable additivity.)

For the sake of completeness we introduced the concept of sigma algebra, but it is a techni-

cality that we will not have to worry about. For all finite or countable S, B is just {all subsets
of S, including S'}.



Properties of probability

Theorem 2: If P is a probability function and A is any set in B, then.,

a) P(¢) =0, where ¢ is the empty set.
b) P(A) <1
c) P(A°) =1— P(A)

Theorem 3: If P is a probability function, then

a) P(A) =X, P(ANC;) for any partition Cy, Cs...
b) P(U2,A;) < X2 P(A;) for sets Ay, As, ... (Boole’s inequality)



Real probabillity

Also known as Classical probability, this was developed during the 18th-19th century by Pascal, Laplace
and others to serve the gambling industry.

If there are several possible outcomes and there 1s a symmetry between them so they are all, in a
sense, identical, then their individual probabilities must be equal. For example, there are two sides to a
coin, so if you toss is there must be a probability é for each face to land uppermost. Likewise there are
52 cards in a pack, so the probability of a particular card being chosen is % In the same way there are 6
sides to a dice, and 33 slots in a roulette wheel,

This enables you to answer questions like ‘What 1s the probability of rolling more than 10 with
2 dice?’. There are 3 such combinations (5-6, 6-5 and 6-6) out of the 6 x 6 = 36 total possibilities,
so the probability is ﬁ Compound instances of A are broken down into smaller instances to which
the symmetry argument can be applied. This is satisfactory and clearly applicable - you know that if
someone offers you a 10 to 1 bet on this dice throw, you should refuse; in the long run knowledge of the

correct probabilities will pay off.

The problem arises that this approach cannot be applied to continuous variables. This 1s brought
out in Bertan’s paradoxes, one of which runs:

In a circle of radius R an equilateral triangle is drawn. A chord is drawn at random. What is the
probability that the length of the chord is greater than the side of the triangle?

Barlow, Asia Pacific School,Vietham, 2017,
arXiv 1905.12362v1



Frequentist Probability

2.4 Frequentist Probability

Because of such difficulties, Real Probability was replaced by Frequentist Probability in the early 20th
century, This 1s the usual definition taught in schools and undergraduate classes. A very readable account
1s given by von Mises [10].

Ny
Py= lim —
A N—oo NN
N 1s the total number of events in the ensemble (or collective). It can be visualised as a Venn

diagram, as in Figure 2.



Conditional probability

A familiar example of conditional probability is dice throws. Suppose you have thrown a dice
3 times and got a 6 each time. What is the probability of getting a 6 in the next throw given
that you have got three 6’s in a three previous throws.

The answer is it’s still % since the events are independent or the answer is the probability

of getting four 6’s in a row is (%)4, so the probability is (%)4 for getting a 6 in a next throw.

Definition 8: If A and B are events in S, and P(B) 0 then the conditional probability of A
given B, written P(A|B), is

05 (1)



Conditional probability example

Example application of conditional probability:
Draw four cards from top of a deck of cards. What is the probability that all four are aces?

o : 1 1
The .aunswer s Ty = 0T
But in a alternative way,
Probability of 1% card to be ace is P(ace) = &
y 2
Probability of 27 card to be ace given first is ace is P(ace
y
3 02 1 1

e o) — 403 2 1
= P(allfour ace) = 52°51°50°40 — 270725

1*is ace) = = and so on.




Bayes Theorem

Re-expressing (1) we have,

P(AN B) = P(A|B)P(B)
Using symmetry,

P(AN B) = P(B|A)P(A)
— P(A|B) = P(B|A)P(A)

This is often called Bayes Theorem.

Theorem 4: Bayes Rule
Let Ay, As, ... be a partition of the sample space and let B be any set. Then, for each z = 1,2, ...

O(B|A:)P(A)
P(A;|B) = 220, P(B|A;) P(A;)

Example: Suppose we have 30% electron contamination in a pion beam in a calorimeter test

beam run, i.e. P(e) =5 P(r) = in beam. Due to reconstruction error, there is a 5%

chance that a prion gets reconstructed as electron and vice-versa. If in an event a pron has
been detected, what is the probability that truly a pion hit the detector?

Solution: Problem 1.44 (Casella-Berger).



Statistical Independence

Definition 9: Statistical Independece
A collection of events Ay, A,, ..., A,, are mutually independent if for any sub-collection A;;, ... A;;
we have,

P(NS_ Ajj) =I5 P(Ay)

Example: Throw of two die, toss of three coins etc.

Exercise: Consider events Hy, Hy, H3 in a three coin toss experiment,

H, = all caseswherethe first coinlands H ={HTT,HTH HHT , HHH}

9 nd

Hs = all caseswhere coinlands H and soon.

Calculate P(H, N Hy N Hy).



Random variables

Definition 10: A random variable is a function from a sample space S into real numbers.

Examples of random variables:

Experiment Random variable
ete”™ — ete™ collision A
A set of 1 million such collisions average p = p, #, ¢ over the sample of 1 million

In experiment rather than dealing with each event we must often use quantities like average
or average spread over the sample. To summarize the probability structure of the data all such
data summary variables are random variables — they change "unpredictably” as we replace one
sample with another statistically independent sample coming from a repeat of the experiment.

Notation: We will denote random variables with upper case letter like X and its realized
value in an experiment with the corresponding lower case letters like .



Distribution of random variables

Let’s consider three radioactive nuclei that are being observed for 5 seconds. Let the random
variable X be the number of decays occuring in this interval.

All possible cases are

| S: | 111|110 101 | 100 | 011 | 010 | 001 | 000 |
(XS):| 3 [ 2] 2]1]2]|1][]1]0]

(1 denotes nucleus has decayed; 0 denotes nucleus has not decayed)

Range of X is yx = 0,1,2,3. These are the possible outcomes for X, so we have a new
sample space y.Let the probability of decay within 5 seconds be p. Then we can define a
induced probability function P, as:




Cumulative distribution function

In the example above, we can also calculate the probability that X < 0 or 1 or 2 etc.

Py(X <0) | Px(X <0) | Px(X <0) | Px(X <0)
(I=p)?* | 3p(1=p)* | 3p°(1 —p) p’
(1=p)* | 3p(1=p)* | 3p*(1—p)
(1=p)* | 3p(l—p)
P=1/2 (1—p)®
18 1/2 /8 1

Note that we can ask what i1s the probability that X < 2.5 and the answer is Px(X <
2.5) = 3p*(1 — p) + 3p(1 — p)* + 91 — p)* and that is in column 3 of the table above. We can
calculate their comulative probability for every point on the real line.

Definition 11: Cumulative Distribution Function
The cumulative distribution function or cdf of a random variable X denoted by Fx(x) is defined

by,

Fy(x) = Px(X <uxz), Vzx



Mass and density functions

Definition 12: Probability Mass Function
The probability mass function of a discrete random variable X is given by,

Continuing with the example of radioactive decays, if we have N nuclei in a sample, the
probability that x of them will decay in 5 seconds is,

P(X =2)="Cup (1 -p)N

This is the binomial probability mass function. We will be using the binomial pmf in many sit-
uations in particle experiments, because all particle physics experiments are essentially number
counting experiments. N and p are called the parameters of the binomial distribution.

Definition 13: Probability Density Function The probability density function or pdf,
fx(x) of a continuous random variable X is the function that satisfies,

FX(:I})—/ fx(t)dt Yz



Is this a distribution function?

Familiar examples are the exponential, normal (or Gaussian), Cauchy distributions.

As a simple demonstration of the properties of a cdf let us consider the function,

1
Fx(r) = —
) 1l+e®
We see that,
lim Fy(x)=0  since, lim e " =00
T——00 T—»—00
lim Fy(z) =1 since, lime " =0
and,
dFyx(x) e "
— = —— > U
dx (14 e7)

i.e. Fix(x) is a monotonically increasing function.

This one is known as logistic distribution function



Independent but identically
distributed (iid)

Let us consider a perfectly homogeneous radioactive sample consisting of 2N atoms. Let us
divide it into 2 exact halves, A and B such that each piece contains exactly N atoms. Let X
denotes the number of decays in A in 5 seconds and Y denotes the decays in B in 5 seconds.
Quite clearly both X and Y are binomially distributed and for every x = 0,1, 2, 3...N we have,

Px(X =2) = (Y =x)

but, X and Y are drawn from two different pieces and are obviously independent statistically.
We will say, X and Y are independent but identically distributed random wvariable or iid.
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