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Conditional probability

A familiar example of conditional probability is dice throws. Suppose you have thrown a dice
3 times and got a 6 each time. What is the probability of getting a 6 in the next throw given
that you have got three 6’s in a three previous throws.

The answer is it’s still % since the events are independent or the answer is the probability

of getting four 6’s in a row is (%)4, so the probability is (%)4 for getting a 6 in a next throw.

Definition 8: If A and B are events in S, and P(B) 0 then the conditional probability of A
given B, written P(A|B), is

05 (1)



Conditional probability example

Example application of conditional probability:
Draw four cards from top of a deck of cards. What is the probability that all four are aces?

o : 1 1
The .aunswer s Ty = 0T
But in a alternative way,
Probability of 1% card to be ace is P(ace) = &
y 2
Probability of 27 card to be ace given first is ace is P(ace
y
3 02 1 1

e o) — 403 2 1
= P(allfour ace) = 52°51°50°40 — 270725

1*is ace) = = and so on.




Bayes Theorem

Re-expressing (1) we have,

P(AN B) = P(A|B)P(B)
Using symmetry,

P(AN B) = P(B|A)P(A)
— P(A|B) = P(B|A)P(A)

This is often called Bayes Theorem.

Theorem 4: Bayes Rule
Let Ay, As, ... be a partition of the sample space and let B be any set. Then, for each z = 1,2, ...

O(B|A:)P(A)
P(A;|B) = 220, P(B|A;) P(A;)

Example: Suppose we have 30% electron contamination in a pion beam in a calorimeter test

beam run, i.e. P(e) =5 P(r) = in beam. Due to reconstruction error, there is a 5%

chance that a prion gets reconstructed as electron and vice-versa. If in an event a pron has
been detected, what is the probability that truly a pion hit the detector?

Solution: Problem 1.44 (Casella-Berger).



Consider a sample space S divided into
disjoint subsets A;,

ie. S = U; A;,and A;NA; = 0 for
i,

Consider a subset B C .5, it can be expressed as

B = BnNnS = BN(Uj4;) = U; (BN A;)

— P(B) = P(U(BNA)) = Y, P(BNA)

— P(B) = ) .P(B|A;)P(A;) law of total probability
Thus, Bayes' theorem becomes

P(B|A)P(A)

PAIB) = S pB1a)plA)




Consider a disease D carried by 0.1% of people
I.e., the prior probabilities are

P(D) = 0.001,
P(no D) = 0.999

Consider a test that identifies the disease, the result is +ve or -ve

Suppose the probabilities to (in)correctly identify a person with the
disease are,

P(+|D) = 0.98,

P(—|D) = 0.02

Similarly, suppose the probabilities to (in)correctly identify a
healthy person

P(+|no D) = 0.01,

P(—|no D) = 0.99

What is the probability to have the disease if someone is tested
+ve?



We can calculate it using the Bayes' theorem

I.e., the probability to have the disease given a +ve test result is

P(+|D)P(D)
(+|D)P(D) + P(+|no D)P(no D)
0.98 x 0.001

0.98 x 0.001 + 0.01 x 0.999
= 0.089 (posterior probability)

P(DI4) = -

What does it mean?

Patient’s view: Probabilty for him to have the disease is 8.9%.

Doctor’s view: 8.9% of people like this have the disease.



Independent but identically
distributed (iid)

Let us consider a perfectly homogeneous radioactive sample consisting of 2N atoms. Let us
divide it into 2 exact halves, A and B such that each piece contains exactly N atoms. Let X
denotes the number of decays in A in 5 seconds and Y denotes the decays in B in 5 seconds.
Quite clearly both X and Y are binomially distributed and for every x = 0,1, 2, 3...N we have,

Px(X =2) = (Y =x)

but, X and Y are drawn from two different pieces and are obviously independent statistically.
We will say, X and Y are independent but identically distributed random wvariable or iid.



Bernoulli trial, Bernoull distribution

Bernoulli trial: Example coin toss

Bernoulli random variable N has two outcomes

n=1 (success), n = 0 (failure)

Success probability P(n=1) = p is the only parameter
Bernoulli distribution (pmf) : P(1) = p, p(0) = (1-p)
Can also be written as pn(1-p)in

Pi{n) for p=0.6
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Binomial distribution

 |f we do n bernoulli trials, what is the probability
of X successes? (e.g. 4 tails in 10 coin tosses)

 Pmf = Binomial(X=x; n, p) = "C,p“(1 —p)"*

Probability Function
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Negative Binomial distribution

e Num
e Num

ner of successes(r) Is fixed parameter

ner of trials (X) is the random variable

« binomial*(X; r,p) ~ X1C_,pr(1-p)*-

Negative Binomial Distribution PDF
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Moments of a distribution

Definition 14: Mean
The expected value/ expectation value/ expectation/ mean (all are equivalent words) of a

random variable X is defined as
ff; rf(x)dx if X iscontinuous )

- {EIJEX vf(x) if Xisdiscrete

For any general function of X, g(X), which is also a random variable
Cg(x) f(z)dr if Xiscontinuous
<g(x)>= {1 1 Xiscontin 3)
D wex (1) f(x) if Xisdiscrete

Let us calculate the mean when X is uniformly distributed.

| b b+ a
<X >= T dr = X dr =
/ Jb—a,l /ajb—a,"r 2

20

1
Therefore in the range (0,1) < X >= .



Higher moments

Eq. (3) defines the expectation of any function g(z) of X. ¢,(X) = < X™ > is a class of
functions of particular interest. These quantities are called the n'* moment of X, we will
denote them by s .

The nt" central moment of X is
n ,
pn =< (X—< X >)>=<(X — ,uf> where, p=p, =< X >

The central moments contain information about the shape of the distribution around the mean.

The 2"¢ central moment, known as variance < (X— < X >)2 > = pogives a measure of

how widely the random no. X is distributed about its mean p. The square root of variance
o =+/(X— < X >)%is called the standard deviation (s.d.).

Imporant: Often +o is quoted as statistical uncertainty or statistical error.



Skewness and Kurtosis

Deﬁniti?n 15: Skewness & Kurtosis
where, pz = < (X —pu)? > is called skewness and is a measure of how asymmetric

[

(11g)3/2
the distribution fx(x) of X is.
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where, g4 is the 4 central moment < (X — p)* >, is called kurtosis and is the

Negative kurtosis



Moment generating function (MGF)

The moment generating function of a random variable X is defined as,

Mx (x)

< e > note that the expectation may not exist

o0
/ e fx(x)dx  for X continuous

— Z e"P(X =x) for X discrete

T

To see how Mx(t) generates moments, let us differentiate My w.r.t t,

dMx (t d [ .
x(f) = —/ e’ fx(z)dx
dt dt —infty
2/ re'” fx (v)dx
—in fty
= < ze'* >
a - d"
p Eﬂfx(iﬂ)hzo =< X > Similarly, e Mgl =< X™ >




Bernoulli MGF

« Moment generating function of Bernoulll
distribution: calculate expectation of (exp(tn))

where n Is the outcomes of Bernoulli trials
* It will have just two terms for n=0,1

=e' (1= p)+¢€ p,



Homework

Exercise 2.1. Show that if X is binomially distributed, its given by
P(X =xz)="Cp"(1 —p)""
then < X >=np
Exercise 2.2. We will often encounter Cauchy distribution or Breit-Wigner distribution, which

is a more generalized form of Cauchy distribution. An interesting property of a Cauchy dis-
tributed variable X is < | X| >= oo. Prove this property.

Exercise 2.3. Another useful property relating the distance of a random variable X to some
constant b is

<(X=b)P>=<(X—<X >)P>+(< X >-b)

Prove this property.



Exercise 2.4. Show that if X is a random variable then var(aX + b) = a*var(X). Note that
var(X) =< X? > — < X >%

Exercise 2.5. Show that the variance of X ~ binomial(n,p) (i.e. X is a random variable
distributed binomially, with n and p as the parameters of the binomial) is,

np(l —p)

Exercise 2.6. In physics there are many examples of quantities that follow an exponential
distribution

fx(z) = Ae™®/"

where, A is a constant such that [~ fx(z)dz = 1 and 7 is a constant. e.g. The life-time of a
radioactive nuclei, free path of a high energy photon in some material before it converts to an
eTe” pair, or the free path travelled by a charged pion (77, 77) in a piece of material before it
does a nuclear interaction.

(i) Exponential is a single parameter distribution, depending only on the paramter 7. Prove

1
that the const. A (called the normalization const.) is —.
T

(ii) Find p =< X > if X is an exponentially distributed random no.

(iii) Find 02 = < (X — p)? >



Exercise 2.7. A gamma distribution is given by the pdf

1

Flx) = F(&)ﬁﬁxo‘_le_xm wiere; 0 gt oo,, > 0; P >0
Prove that
B
AJX({;) — 1 ~ mcr—le_-wjl — ,Bf
[(a)B~ Jo
1

=g 3 )
From this prove that if X is gamma distributed then < X > = af3

Exercise 2.8. Show that if X ~ binomzial(n, p) then

Mx(t) = [pe’ + (1 —p)]"
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