Statistical methods and error analysis $3^{\text {rd }}$ Alice-India School 2020

Satyaki Bhattacharya Saha Institute of Nuclear Physics

Conditional probability

A familiar example of conditional probability is dice throws. Suppose you have thrown a dice 3 times and got a 6 each time. What is the probability of getting a 6 in the next throw given that you have got three 6's in a three previous throws.

The answer is it's still $\frac{1}{6}$ since the events are independent or the answer is the probability of getting four 6 's in a row is $\left(\frac{1}{6}\right)^{4}$, so the probability is $\left(\frac{1}{6}\right)^{4}$ for getting a 6 in a next throw.

Definition 8: If A and B are events in S, and $P(B) 0$ then the conditional probability of A given B, written $P(A \mid B)$, is

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \tag{1}
\end{equation*}
$$

Conditional probability example

Example application of conditional probability:
Draw four cards from top of a deck of cards. What is the probability that all four are aces?
The answer is $\quad \frac{1}{5^{2} C_{4}}=\frac{1}{270725}$
But in a alternative way,
Probability of $1^{s t}$ card to be ace is $P($ ace $)=\frac{4}{52}$
Probability of $2^{\text {nd }}$ card to be ace given first is ace is $P\left(\right.$ ace $\mid 1^{\text {st }}$ is ace $)=\frac{3}{51}$ and so on.
$\Longrightarrow P($ all four ace $)=\frac{4}{52} \cdot \frac{3}{51} \cdot \frac{2}{50} \cdot \frac{1}{49}=\frac{1}{270725}$

Bayes Theorem

Re-expressing (1) we have,

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Using symmetry,

$$
\begin{gathered}
P(A \cap B)=P(B \mid A) P(A) \\
\Longrightarrow P(A \mid B)=P(B \mid A) P(A)
\end{gathered}
$$

This is often called Bayes Theorem.

Theorem 4: Bayes Rule

Let A_{1}, A_{2}, \ldots be a partition of the sample space and let B be any set. Then, for each $i=1,2, \ldots$

$$
P\left(A_{i} \mid B\right)=\frac{\phi\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=0}^{\infty} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}
$$

Example: Suppose we have 30% electron contamination in a pion beam in a calorimeter test beam run, i.e. $P(e)=\frac{3}{10} \quad P(\pi)=\frac{7}{10} \quad$ in beam. Due to reconstruction error, there is a 5% chance that a prion gets reconstructed as electron and vice-versa. If in an event a pron has been detected, what is the probability that truly a pion hit the detector?

Solution: Problem 1.44 (Casella-Berger).

Consider a sample space S divided into disjoint subsets A_{i},
i.e. $S=\cup_{i} A_{i}$, and $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$.

Consider a subset $B \subset S$, it can be expressed as
$B=B \cap S=B \cap\left(\cup_{i} A_{i}\right)=\cup_{i}\left(B \cap A_{i}\right)$
$\Longrightarrow P(B)=P\left(\cup_{i}\left(B \cap A_{i}\right)\right)=\sum_{i} P\left(B \cap A_{i}\right)$
$\Longrightarrow P(B)=\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right) \quad$ law of total probability
Thus, Bayes' theorem becomes

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

Consider a disease D carried by 0.1% of people i.e., the prior probabilities are
$P(D)=0.001$,
$P($ no $D)=0.999$
Consider a test that identifies the disease, the result is + ve or -ve Suppose the probabilities to (in)correctly identify a person with the disease are,
$P(+\mid D)=0.98$,
$P(-\mid D)=0.02$
Similarly, suppose the probabilities to (in)correctly identify a healthy person
$P(+\mid$ no $D)=0.01$,
$P(-\mid$ no $D)=0.99$
What is the probability to have the disease if someone is tested +ve ?

We can calculate it using the Bayes' theorem
i.e., the probability to have the disease given a + ve test result is

$$
\begin{array}{r}
P(D \mid+)=\frac{P(+\mid D) P(D)}{P(+\mid D) P(D)+P(+\mid \text { no } D) P(\text { no } D)} \\
=\frac{0.98 \times 0.001}{0.98 \times 0.001+0.01 \times 0.999} \\
=0.089 \quad(\text { posterior probability })
\end{array}
$$

What does it mean?
Patient's view: Probabilty for him to have the disease is 8.9%.
Doctor's view: 8.9% of people like this have the disease.

Independent but identically distributed (iid)

Let us consider a perfectly homogeneous radioactive sample consisting of $2 N$ atoms. Let us divide it into 2 exact halves, A and B such that each piece contains exactly N atoms. Let X denotes the number of decays in A in 5 seconds and Y denotes the decays in B in 5 seconds. Quite clearly both X and Y are binomially distributed and for every $x=0,1,2,3 \ldots N$ we have,

$$
P_{X}(X=x)=P_{Y}(Y=x)
$$

but, X and Y are drawn from two different pieces and are obviously independent statistically. We will say, X and Y are independent but identically distributed random variable or iid.

Bernoulli trial, Bernoulli distribution

- Bernoulli trial: Example coin toss
- Bernoulli random variable N has two outcomes
- $\mathrm{n}=1$ (success), $\mathrm{n}=0$ (failure)
- Success probability $P(n=1)=p$ is the only parameter
- Bernoulli distribution (pmf) : $P(1)=p, p(0)=(1-p)$
- Can also be written as $p^{n}(1-p)^{1-n}$

Binomial distribution

- If we do n bernoulli trials, what is the probability of X successes? (e.g. 4 tails in 10 coin tosses)
- Pmf $=\operatorname{Binomial}(\mathrm{X}=x ; \mathrm{n}, \mathrm{p})={ }^{n} C_{x} p^{x}(1-p)^{n-x}$

Negative Binomial distribution

- Number of successes(r) is fixed parameter
- Number of trials (X) is the random variable
- binomial* $(X ; r, p) \sim^{x-1} C_{r-1} p^{r}(1-p)^{x-r}$

Moments of a distribution

Definition 14: Mean

The expected value/ expectation value/ expectation/ mean (all are equivalent words) of a random variable X is defined as

$$
E(X)=<X>=\left\{\begin{array}{l}
\int_{-\infty}^{\infty} x f(x) d x \quad \text { if } X \text { is continuous } \tag{2}\\
\sum_{x \in \chi} x f(x) \quad \text { if } X \text { is discrete }
\end{array}\right.
$$

For any general function of $X, g(X)$, which is also a random variable

$$
<g(X)>= \begin{cases}\int_{-\infty}^{\infty} g(x) f(x) d x & \text { if } X \text { is continuous } \tag{3}\\ \sum_{x \in \chi} g(x) f(x) & \text { if } X \text { is discrete }\end{cases}
$$

Let us calculate the mean when X is uniformly distributed.

$$
<X>=\int_{-\infty}^{\infty} x \frac{1}{b-a} d x=\int_{a}^{b} x \frac{1}{b-a} d x=\frac{b+a}{2}
$$

Therefore in the range $(0,1)<X>=\frac{1}{9}$.

Higher moments

Eq. (3) defines the expectation of any function $g(x)$ of $\left.X . g_{n}(X)=<X^{n}\right\rangle$ is a class of functions of particular interest. These quantities are called the $n^{\text {th }}$ moment of X, we will denote them by μ_{n}^{\prime}.

The $n^{\text {th }}$ central moment of X is

$$
\mu_{n}=<(X-<X>)^{n}>=<(X-\mu)^{n} \quad \text { where, } \mu=\mu_{1}^{\prime}=<X>
$$

The central moments contain information about the shape of the distribution around the mean.
The $2^{\text {nd }}$ central moment, known as variance $\left.<(X-<X>)^{2}\right\rangle=\mu_{2}$ gives a measure of how widely the random no. X is distributed about its mean μ. The square root of variance $\sigma=\sqrt{(X-<X>)^{2}}$ is called the standard deviation (s.d.).

Imporant: Often $\pm \sigma$ is quoted as statistical uncertainty or statistical error.

Skewness and Kurtosis

Definition 15: Skewness \& Kurtosis
$\alpha_{3}=\frac{\mu_{3}}{\left(\mu_{2}\right)^{3 / 2}}$ where, $\mu_{3}=<(X-\mu)^{3}>$ is called skewness and is a measure of how asymmetric the distribution $f_{X}(x)$ of X is.
$\alpha_{4}=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}$ where, μ_{4} is the $4^{t h}$ central moment $\left\langle(X-\mu)^{4}\right\rangle$, is called kurtosis and is the measure of how sharply peaked a distribution is.

Moment generating function (MGF)

The moment generating function of a random variable X is defined as,

$$
\begin{aligned}
M_{X}(x) & =<e^{t x}>\quad \text { note that the expectation may not exist } \\
& =\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x \quad \text { for } X \text { continuous } \\
& =\sum_{x} e^{t x} P(X=x) \quad \text { for } X \text { discrete }
\end{aligned}
$$

To see how $M_{X}(t)$ generates moments, let us differentiate M_{X} w.r.t t,

$$
\begin{aligned}
\frac{d M_{X}(t)}{d t} & =\frac{d}{d t} \int_{-i n f t y}^{\infty} e^{t x} f_{X}(x) d x \\
& =\int_{-i n f t y}^{\infty} x e^{t x} f_{X}(x) d x \\
& =<x e^{t x}>
\end{aligned}
$$

$$
\left.\therefore \frac{d}{d t} M_{X}(x)\right|_{t=0}=<X>\quad \text { Similarly, } \frac{d^{n}}{d t^{n}} M_{X}(x)=\left\langle X^{n}\right\rangle
$$

Bernoulli MGF

- Moment generating function of Bernoulli distribution: calculate expectation of (exp(tn)) where n is the outcomes of Bernoulli trials
- It will have just two terms for $\mathrm{n}=0,1$

$$
\begin{aligned}
M^{(t)} & =\left\langle e^{t n}\right\rangle \\
& =\sum_{n=0}^{1} e^{t n} p^{n}(1-p)^{1-n} \\
& =e^{0}(1-p)+e^{t} p
\end{aligned}
$$

Homework

Exercise 2.1. Show that if X is binomially distributed, its given by

$$
P(X=x)={ }^{n} C_{x} p^{x}(1-p)^{n-x}
$$

then $\langle X\rangle=n p$

Exercise 2.2. We will often encounter Cauchy distribution or Breit-Wigner distribution, which is a more generalized form of Cauchy distribution. An interesting property of a Cauchy distributed variable X is $<|X|\rangle=\infty$. Prove this property.

Exercise 2.3. Another useful property relating the distance of a random variable X to some constant b is

$$
<(X-b)^{2}>=<(X-<X>)^{2}>+(<X>-b)^{2}
$$

Prove this property.

Exercise 2.4. Show that if X is a random variable then $\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$. Note that $\left.\operatorname{var}(X)=<X^{2}>-<X\right\rangle^{2}$.

Exercise 2.5. Show that the variance of $X \sim \operatorname{binomial}(n, p)$ (i.e. X is a random variable distributed binomially, with n and p as the parameters of the binomial) is,

$$
n p(1-p)
$$

Exercise 2.6. In physics there are many examples of quantities that follow an exponential distribution

$$
f_{X}(x)=A e^{-x / \tau}
$$

where, A is a constant such that $\int_{0}^{\infty} f_{X}(x) d x=1$ and τ is a constant. e.g. The life-time of a radioactive nuclei, free path of a high energy photon in some material before it converts to an $e^{+} e^{-}$pair, or the free path travelled by a charged pion $\left(\pi^{+}, \pi^{-}\right)$in a piece of material before it does a nuclear interaction.
(i) Exponential is a single parameter distribution, depending only on the paramter τ. Prove that the const. A (called the normalization const.) is $\frac{1}{\tau}$.
(ii) Find $\mu=<X>$ if X is an exponentially distributed random no.
(iii) Find $\sigma^{2}=<(X-\mu)^{2}>$

Exercise 2.7. A gamma distribution is given by the pdf

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} \quad \text { where }, 0<x<\infty, \alpha>0, \beta>0
$$

Prove that

$$
\begin{aligned}
M_{X}(t) & =\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} x^{\alpha-1} e^{-x / \frac{\beta}{1-\beta t}} \\
& =\left(\frac{1}{1-\beta t}\right)^{\alpha}
\end{aligned}
$$

From this prove that if X is gamma distributed then $\langle X\rangle=\alpha \beta$

Exercise 2.8. Show that if $X \sim \operatorname{binomial}(n, p)$ then

$$
M_{X}(t)=\left[p e^{t}+(1-p)\right]^{n}
$$

