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Nonabelian Gauge Theory

Consider a scalar multiplet @(x) of length n, i.e.
fPlfx)
O(x) = :
Pn (%)

where each ¢;(x) (i = 1, ...,n) is a complex scalar field.

Construct the ‘free’ Lagrangian density
L= ("), ®—-MDTD

This is just a shorthand for n mass-degenerate free scalar fields, i.e.

n
L= Z(ME‘ 0, i — M?p; ¢;)
=1
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Now consider a global SU(N) gauge transformation

O(x) = @ (x) = UD(x)
where U is a SU(N) matrix, i.e. UT U =1 and detU = +1, where

Uir - U . i
U=|[ : 5 n and N are different (in general)

n=N
Unl ] Unn . . .
| If equal it is the fundamental representation

The number of free (real) parameters in this SU(N) matrix is

p=2N2—N-2NC,—1=N2-1

We can write this SU(N) transformation in the form U = e 1g0.T

P
T:Z@ﬂa

where the 8 = (91, e 9;0) are free (real) parameters} B
g.

and the T = (Tl, T ']I‘.p) are the generators of SU(N

Electroweak Unification and the Standard Model : Lecture-4



Under this gauge transformation
D(x) - D (x) =Ud(x)
O (x) » @ t(x) = o (x) U
The Lagrangian density transforms to
L- L= (0"D)9,o — M2 T
= (g IUIIJ)TE’H[U(D — M?TUTUD global
= (5“iIJ)'|'[[J'1'[Uaﬂfb — M?oTUTUD unitary
= (6*"‘[1))"'@;1(1) — M*pTd
= L

Thus, this system of n mass-degenerate free scalar fields possesses a

SU(N) global gauge symmetry — with p conserved currents/charges.
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The next step is to convert this to a SU(N) local gauge symmetry, i.e. 81

P(x) - P (x) =Ux) P(x)
OT(x) - T (x) = dT(x) UT(x)

As in the nonAbelian case, the Lagrangian density will no longer remain

gauge invariant...

L- L= (0"D)9,o — M2 T

= (0"U ®)"9,U & — M*PTUTU P  local

= (U3, ® + 9,U0)" (U3, ® + 9,Ud) — M2DTUTU®

= [(19, + U'4, U)‘D:TUFU(H% +UT9,U0)P — M*PTUTUD unitary

= [(10, + Uta,U)®]" (13, + UT9,U)D — M2DTd =L
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Solution: define a covariant derivative D, = 10, + igA, (x)

where the A, (x) is a n X n matrix of gauge fields, i.e.

U H

19 A1n
Al = : :
U oy

an 1 aﬂ.ﬂ

Not all of these need to be independent... (A" is Hermitian...)

We require the covariant derivative D, ® to transform exactly like @,
e,
! I
D,$->D,® =0UD,®

for then, if we rewrite the Lagrangian density as
L = (DH (D)'f'ID#(D — M*pTd

it will be trivially gauge invariant.
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How do we ensure that D, ® — ]DJ’# O' =0T D,®?

By adjusting the transformation of the gauge field matrix A* ...

D,® - D¢ =

(10, +igA’, )UD

0,(UD) + igA', Ud

U(a,®) + (0,U)® +igA’, UD

U(d,®) + UU'(9,U)® +igUUTA", U

U[19, + UT9,U +igUTA’, U]

If this is to be the same as
D, P = (19, + igA, )P
we must have igA, = igUTA" U+ U'9,U
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Rewrite

igA, =igUTA'", U+ U"9,U
dS

igUtA", U = igA, —U'9,U
or,

igA', = igUA,U" — (9,U)U"

Note that UUT =1 leadsto (9,U)U" + U(a,U") =0
l.e.
igA', = igUA,U" +U(9,U") = igUA,U" + U(9,U")UU"

or, finally,

A, =U lz&y — é(aﬂw)w] Ut
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Quick check: suppose N = 1andn =1, i.e. U(1) gauge symmetry
ThenU =e"9% and A, = 4,.

Now,
A, = U|A, —j(aﬂ_uj-r)m] Ut
assumes the form
Af‘u — e—iﬂﬁ' [AH _é(aﬂeﬂgﬁ)e—igﬁl €+f_ge
= ¢ 199 [Aﬁ —;;(igayﬁ e+igﬂ)e—ige] o +igh
= A, + 6#9

which is what we had derived for the U(1) case.
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How many independent fields do we require in the A, matrix?
;o i N N
Ay = U |4, —=(3,Uh)U| U’

Since U = e 199 T j e, U has p free parameters, A, should have p

independent fields. This encourages us to expand

—_—

P
A (x) = Z AL(x) T, = A*.T
a=1

One can now work out the transformation properties of the A‘z(x)

fields in terms of the parameters 9 = (91, ’9;0)'

(Will do this for specific cases...)
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We can also use this expression
P
AH(x) = z AE(x) T, = AF.T
a=1

to write out the interaction terms in the Lagrangian density...
L = (ID)*“(D)'l'ID)H(D — M?9Td
= [(10* + igA*")®]T (10, + igA, )P — M*DTdD
= (0* D)t d, -M?*OTd free scalar

+ ig[(@“(b)'lﬁlﬁ O — PTAH dy (I)] gauge-scalar interaction
+ gz(b'rﬁx“ﬁﬁ(b seagull terms
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We should complete the Lagrangian density by adding a kinetic term

for the gauge fields...

i
Fu = —E[mﬁ, D,| =d,A, — 0,A, +ig|A, A,]

Now, we have
D,® - D', &' =UD,d
=UD,U" U®
=UD,U"®" = D', = UD,U"

Thus,
Fy — Fy = — ;[]D ]D)’]———[[UID U',UD,U'] = UF,, U

To get gauge invariance, we have to take the trace...
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The full Lagrangian density is now

1 1 1
L= (D'D)'D,® — M2OTD — =Tr[F,, F* |

Since F,, = (9,A, —0,A,) +ig|A,, A, ]

|

FYY = (9MAY — 0VAM) + ig[AF, A]

Leads to triple gauge vertices and quadruple gauge vertices

absent in an Abelian gauge theory, e.g. QED

89
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SU(2) Gauge Theory 90

Recall that for weak interactions we needed three gauge bosons, the

— 1170
/AR AN
This seems to indicate a gauge theory with three generators

and the obvious one to take is an SU(2) gauge theory.

All of the above formalism will work, except that now we must take the

generators as
1 — 1 —
Ty =301 T, =50, T3 = 503

obeying the Lie algebra
[Tar Tb] = iEa.bc: TC
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The full Lagrangian for this is

L= (0rD) o, ®-M20tD + ig[(*D)TA, ® — ©TA*9, D]

+g*®TAFA, O — ITr|F,, F" | 0 — (m)
-~ \@p

where
A = ATT, + AL T, + AS T,

We can also expand
F¥ = 0,A, — 0,A, +ig|A,,A,|
=F"T,+E"T,+FE"T;
where

Faﬁv = 0MAg — avAﬁ — Y€abc AEAE
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Mass generation:

To break this symmetry spontaneously, we now replace the scalar mass

term by a potential
-M?PTd - —V(D)
V(®) = —M2D D + A(0T D)

i.e. this is a theory with n massless scalars and some self-interactions

As before, if we define a real field
T ()P (x) = 1n(x)°
then we can write the potential as
V() = —M*n* + 1n*
with a local maximum atn = 0 ; local minima atn = v/V2 = \/MZ—/ZA
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These local minima correspond to

M2

[IJf(I) e 2 = —

T =92

Recall that

Q1+iQ,

A2 V2
¢ = ((,OB) | @3tips

V2

sothat ®T® = |pa|% + |@p|? = Z(@] + @5 + @3 + ¢5)
l.e.

MZ
1+ Q2 + @3+ Qi = —

Equation of a 4-sphere — only one of these points can be the vacuum

Hidden Symmetry!!

93
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Vacuum manifold in a U(1) gauge theory is a circle

e The scalar field is
_ ¢ + 1,
V2

e Traditional to orient the axes in 02
the -space such that only the
(1 has a vacuum expectation
value

Qo ={p1) =V

(p) ==

P1

94
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Vacuum manifold in a U(1) gauge theory is a circle

e The scalar field is
_ ¢ + 1,
V2

e Traditional to orient the axes in
the -space such that only the
(1 has a vacuum expectation
value

Qo ={p1) =V

(p) ==

P2

P2

P1

P1
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Vacuum manifold in a SU(2) sauge theory is a four-sphere 95

e The scalar field is
©1+iQr
V2
P3+iQy

V2

b =

e Traditional to orient the axes in
the ¢-space such that only the

@3 has a vacuum expectation P1
value
(p3) =
l.e.
0 .
(D) = (ﬂ) (The ¢4 axis is not shown...)
V2

e Now shift ® = (D) + @’
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Vacuum manifold in a SU(2) gauge theory is a four-sphere

e The scalar field is
©1+iQr
V2
P3+iQy

V2

b =

e Traditional to orient the axes in
the ¢-space such that only the
@3 has a vacuum expectation P41

value
_ (p3)=v P1
i.e.
(D) = (g) (The ¢4 axis is not shown...)
V2

e Now shift ® = (D) + @’
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Seagull term:

Lsg = g*PTA*A, @ > g*((P) + O)TALA, (D) + D)

= gH{P)TAFA (D) + -
We thus get a mass term for the gauge bosons, viz.
Linass = G{PYTAFA, (D) = g* (A (P)T(A,(D))

Expand this...
1
A\l# — A#l']rl + Aﬁz']rz + A#3']T3 — E(A‘ulo-l + AJHZG-Z + A‘uggg)
. 0 +
Ay Ay — LAy W W”
2 2 _| 2 2
hatide  Aa [T W
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W\ oy vy,
2 \E 2 2
M/;i VI/;; —_— __%D
a2 W2 2V2
and
rv » ~
(A“((b))'f' — =Wt ——WHO
2 zﬁ
. _,/
Thus,
2.,2 2. 92
; gev . gcv
Lmass ZQZ(AM(I)})I(A#(‘D)) :( 4 %+Wp + 4 M’LUW“[])

= MEV%JrW#— + %MI?VM’LOWHU

where My, = %gv
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In a hidden U(1) gauge theory: @ = (@) + (Pf 98

p1t+ip; v n p'1+ip'ys  (p'1+v)+ip's
V2 V2 N V2

When substituted into the potential, this leads to a correct-sign mass

for ¢'; (massive scalar) and keeps @', massless (Goldstone boson)

In a hidden SU(2) gauge theory: @ = (@) + @’

P1+ip) 0 p'1+ip' @' 1+ipH
V2 R n V2 _ V2

P3+ips v @'3+ip's | | (@'3+v)+ip'y
V2 V2 V2 V2

When substituted into the potential, this leads to a correct-sign mass

for ¢'; (massive scalar) and keeps ¢’; ; , massless (Goldstone bosons)

We now have to worry about three Goldstone bosons
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The Higgs mechanism works here too... 7

0

U(x)) (polar form)

Exactly as before: parametrise ®(x) = (0T (
Consider the unbroken (i.e. gauge invariant) Lagrangian density
1 T
L = —Tr[F, F"] + (D"®) D, — V(D)
t to)
where V() = -M*®'d + 2 (0')
At this level, we are free to make any gauge choice we wish...

Make a gauge transformation

() » U D() = e 90T (x) = lo?OFWIT (| (Ox))
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We might as well choose a special gauge, since the gauge symmetry is

going to be broken anyway...

Choose the three gauge functions 8(x) such that

96(x) —&(x) =0
This is called the unitary gauge.

In this gauge, ®(x) = @, (x) = ( and the Lagrangian becomes

0
n(x))

L = —Ti[F,,F*"] + (D"®,) D, ®, — V(n)
where V(n) = —M?n? + in*

The ground state is still at v//2 so we must shift

1y

n="7+n
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This will lead to 0

1. Lonass = MW W' + MW W with My, =1 gv
v ry — 41 2,2 . _

2. V(5 +n) = +4M20? + - ie. My = 2M

3. and there are no Goldstone bosons...

if we had kept the 5(.%') they would have been the Goldstone bosons

These three degrees of freedom reappear in the longitudinal
polarisations of the three W™, W~ and W°.
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The gauge field matrix expands to

Aﬁi — A]ulrﬂ‘l +AF2T2 +A]u3rﬂ‘3

Now,

W = 2t W =2t W = Ay
= Aa =W +W)  Ap =W -W)  As =W
l.e.

1 _ [ _
A, =W+ W)Ty + (W, =W, )T, + W, Ty
1 . 1 . —
=5 (T1 + iT)W," + = (Ty — iT)HW, + W, T

= W T, + W, T_+ W2 T; whereT, = %(Tl +iT,)
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