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Introduction

The Glauber model is used to describe nuclear collisions over a wide
range of energies.

It is based on semiclassical picture of nuclear collisions in the impact
parameter representation.

It assumes that the nuclei follow straight line trajectory.

The nucleus nucleus collisions are obtained in terms of nucleon
nucelon interactions with density distributions of the two nuclei as
input.
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Basic scattering theory and impact parameter representation

When a beam of particles are sacterred off from a spherically symmetric
potential you can expand the plane wave in terms of sum of many partial
waves with angular momentum l .
Asymptotically, the wave function can be expressed as

Ψ(r) = exp(ikz) + f (θ, k)
exp(ikr)

r
(1)

Here f (θ, k) is the scattering amplitude given by

f (θ) = fN(θ)

=
1

2ik

∑
(2l + 1)(Sl − 1)Pl(cos θ). (2)
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Basic scattering theory and impact parameter representation

The nucleus-nucleus differential cross section as a function of center of
mass scattering angle θ is described as

dσ

dΩ
= |f (θ)|2, (3)

The total reaction cross section in the collision of two nuclei as per the
partial wave analysis is given by

σin =
π

k2

∞∑
l=0

(2l + 1)(1− |Sl |2). (4)

Here

Sl = exp(2iδl) is called the scattering matrix and δl is the nuclear
phase shift.

The factor (1− |Sl |2) is called the transmission coefficient.

|Sl |2 is referred to as transparency function or the probability that the
projectile undergoes no interaction at a given l .
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Basic scattering theory and impact parameter representation

In a semiclassical approximation, one can write angular momentum l in
terms of momentum k and impact parameter b as

l +
1

2
= kb. (5)

One can use

(2l + 1) = 2kb∑
l

= k

∫
db

We can get the reaction/inelastic cross section in impact parameter
representation as

σin = 2π

∫
bdb(1− |S(b)|2). (6)

The factor Tr(b) = 1− |S(b)|2 is nothing but the transmission coeff.
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Basic scattering theory and impact parameter representation

If the two nuclei are assumed to be sharp spheres with radii R1 and R2 then

Tr(b) = 1 for b ≤ R1 + R2

= 0 for b > R1 + R2. (7)

The total reaction cross section in this case is given by

σin = 2π

∫ R1+R2

0
bdb = π(R1 + R2)2. (8)

This is the well-known geometric formula for the cross section.
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The Glauber model: Basic fromalism

The Glauber model: Basic fromalism

The Glauber model basically describe the nucleus-nucleus interaction
in terms of elementary nucleon-nucleon interaction.

It is based on the assumption that the nucleus travels in a straight
line path.

At high energies this approximation is very good.

At low energies the nucleus is deflected from straight line path due to
Coulomb repulsion.

Consider the collision of a projectile nucleus B on a target nucleus A.

Define t(b)db as the probability for having a nucleon-nucleon collision
within the transverse area element db when one nucleon is situated at an
impact parameter b relative to another nucleon which is normalized
according to ∫

t(b)db = 1. (9)
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The Glauber model: Basic fromalism

We define the probability of finding a nucleon in the volume element
dbAdzA in the nucleus A at the position (bA, zA) is ρA(bA, zA)dbAdzA
which is normalized as ∫

ρA(bA, zA)dbAdzA = 1. (10)

Similarly, the probability of finding a nucleon in the volume element
dbBdzB in the nucleus B at the position (bB , zB) is ρB(bB , zB)dbBdzB
which is normalized as ∫

ρB(bB , zB)dbBdzB = 1. (11)
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The Glauber model: Basic fromalism

Figure: Collision of two nuclei at an impact parameter b

9 / 47



The Glauber model: Basic fromalism

The probability for occurrence of a nucleon-nucleon collision when the
nuclei A and B are situated at an impact parameter b relative to each
other is given by

T (b)σNN =

∫
ρA(bA, zA)dbAdzA ρB(bB , zB)dbBdzB t(b− bA + bB) σNN .

(12)
This can be written in terms of z-integrated densities as

T (b)σNN =

∫
ρzA(bA)dbA ρ

z
B(bB)dbB t(b− bA + bB) σNN . (13)

Here σNN is the total/inelastic nucleon nucleon cross section.
The collision probability we are talking about is for an inelastic collision.
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The Glauber model: Basic fromalism

There can be upto A× B collision. The probability of occurrence of n
collisions will be

P(n, b) =

(
AB

n

)
(1− s)n(s)AB−n. (14)

Here, s = 1− T (b)σNN . The total probability for the occurrence of an
inelastic event in the collision of A and B at an impact parameter b is

dσinAB
db

=
AB∑
n=1

P(n, b) = 1− sAB . (15)

The total inelastic cross section can be written as

σinAB = 2π

∫
bdb

(
1− sAB

)
. (16)

From here one can read the scattering matrix as

|S(b)|2 = sAB = (1− T (b)σNN)AB . (17)
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The Glauber model: Basic fromalism

In the optical limit, where a nucleon of projectile undergoes only one
collision in the target nucleus

|S(b)|2 ' exp(−T (b)σNNAB). (18)

The scattering matrix can be defined in terms of eikonal phase shift χ(b)
as

S(b) = exp (iχ(b)) . (19)

Comparing Eq. (18) with Eq. (19), the imaginary part of eikonal phase
shift is given by

Imχ(b) = T (b)σNNAB/2. (20)

If the ratio of real to imaginary part of NN scattering amplitude is αNN

then real part of χ(b) is

Reχ(b) = T (b)αNNσNNAB/2. (21)
12 / 47



Calculation of T (b) in momentum space

Once we know the phase shift and thus the scattering matrix, we can
calculate all the cross sections.

Calculation of T (b) in momentum space
In the co-ordinate space T (b) is derived as

T (b) =

∫
ρzA(bA)dbA ρ

z
B(bB)dbB t(b− bA + bB). (22)

It is a four dimensional integration: two over bA and two over bB. It is
convenient to write it in momentum space as

T (b) =
1

(2π)2

∫
ρzA(bA)dbA ρ

z
B(bB)dbB

exp (−iq.(b− bA + bB)) fNN(q)d2q. (23)

Here fNN(q) is the q dependence of NN scattering amplitude given by

t(b) =
1

(2π)2

∫
e−iq.bfNN(q)d2q (24)
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Calculation of T (b) in momentum space

T (b) =
1

(2π)2

∫
exp(−iq.b) ρzA(bA) exp(iq.bA)dbA

ρzB(bB) exp(−iq.bB)dbB fNN(q)d2q

=
1

(2π)2

∫
e−iq.bSA(q)SB(−q)fNN(q)d2q

=
1

2π

∫
J0(qb)SA(q)SB(−q)fNN(q)qdq. (25)

Here SA(q) and SB(−q) are the fourier transforms of the nuclear densities.

J0(qb) = (1/2π)

∫
exp(−qb cosφ)dφ (26)

is the cylindrical Bessel function of zeroth order.
The profile function for the NN scattering can be taken as delta function if
the nucleons are point particles.
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Calculation of T (b) in momentum space

In general it is taken as a gaussian function of width r0 as

t(b) =
exp(−b2/(2r20 ))

2πr20
. (27)

Thus,

fNN(q) =

∫
e iq.bt(b)db

=
1

πr20

∫
e iq.b exp(−b2/(2r20 ))db

= exp(−r20q2/2). (28)

Here, r0 ∼ 0.7 fm is the range parameter and σpp is the nucleon-nucleon
total cross section which is taken as 7.0 fm2 at

√
s = 5 TeV.
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Calculation of T (b) in momentum space Density of nucleus: 2pf density

Density of nucleus: 2pf density

The two parameter fermi density is given by

ρ(r) =
ρ0

1 + exp( r−Rt )
, (29)

where ρ0 = 3/
(

4πR3(1 + π2t2

R2 )
)

.

Here

t is the diffuseness and

R, the half value radius in terms of rms radius R.

It is calculated by R = 1.19 ∗ A1/3 − 1.61/A1/3.
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Calculation of T (b) in momentum space Density of nucleus: 2pf density

Figure:

For case of Pb, the values are t = 0.55 fm and R = 6.8 fm.
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Calculation of T (b) in momentum space Density of nucleus: 2pf density
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Figure: The density of Pb nucleus versus the distance from the center.
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Calculation of T (b) in momentum space Density of nucleus: 2pf density

The momentum density can be derived with the Fourier transform

S(q) = 4π

∫
j0(qr) ρ(r) r2dr (30)

S(q) =
8πρ0
q3

ze−z

1− e−2z

(
sin x

z(1 + e−2z)

1− e−2z
− x cos x

)
. (31)

Where z = πdq and x = cq.
The equation for T (b) which is a one dimensional integral can be solved
numerically for this density and thus the overlap integral can be extracted.
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Calculation of T (b) in momentum space Density of nucleus: 2pf density
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Figure: The momentum density of Pb nucleus S(q) versus momentum q.
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Calculation of T (b) in momentum space NN scattering parameter

NN scattering parameter
The average σNN in terms of proton numbers (ZP and ZT ) and neutron
number (NP and NT ) of projectile and target nuclei is written as

σNN =
NPNTσnn + ZPZTσpp + (ZPNT + NPZT )σnp

APAT
. (32)

Here, σpp is the nucleon-nucleon total cross section which is taken as 7.0
fm2 at

√
s = 7 TeV.

At high energies, we can assume σpp = σnn = σnp.
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Participant-spectator picture

Participant-spectator picture

The strategy in the field of high energy heavy ion collisions and QGP
is to plot the Pb+Pb data as the superposition of the
nucleon-nucleon collisions and look for possible departures.

When two nuclei collide at these energies, the nucleons which come in
the overlap region depending on the impact parameter are called
participant nucleons and those which do not participate are called
spectators.
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Participant-spectator picture

Figure: Spectator participant picture of heavy ion collision

These spectators and participants nucleon decide how much energy is
going in the forward and how much in the transverse direction which can
be measured. From these measured energies one can know the impact
parameter for a particular event.
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Participant-spectator picture

Let us relook at the total inelastic cross section for a nucleus-nucleus
collision as

σinAB = 2π

∫
bdb

(
1− (1− T (b)σNN)AB

)
. (33)

The term (1− T (b)σNN)AB gives the probability that in a nucleus
nucleus collision none of the nucleons collided with each other.

For nucleon-nucleon collision A = B = 1 thus q = (1− T (b)σNN)
gives the probability that two nucleon at an impact parameter b do
not collide.

When two nuclei A and B collide the probability of nucleon remaining in
the nucleus A will be

PP = q(b)B (34)

and the probability of nucleon remaining in the nucleus B will be

PT = q(b)A. (35)
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Participant-spectator picture

The probability of having α participant nucleons from the nucleus A is
given by binomial distribution as

P(α, b) =

(
A

α

)
(1− qB)α(qB)A−α. (36)

Similarly,

P(β, b) =

(
B

β

)
(1− qA)β(qA)A−β. (37)

The number of collisions will be

P(n, b) =

(
AB

n

)
(1− q)n(q)AB−n. (38)

The average number of projectile participant and its standard deviation for
each impact parameter b is given by

< α >= A[1− q(b)B ], (39)

σ2α = A[1− q(b)B ]q(b)B . (40)
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Participant-spectator picture

The average number of target participant and its standard deviation for
each impact parameter b is given by

< β >= B[1− q(b)A], (41)

σ2β = B[1− q(b)A]q(b)A. (42)

The average number of total participant from both projectile and target
for each impact parameter is given by

Npart = A[1− q(b)B ] + B[1− q(b)A]. (43)

The average number of N-N collisions is given by

Ncoll = AB[1− q(b)],

= ABσNNT (b). (44)
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Participant-spectator picture Forward energy

Forward energy
The forward energy is measured in the detector called zero degree
calorimeter (ZDC).
The energy measured in the ZDC is can be related to the number of
spectators as

EZ (α) = (A− α)E0, (45)

where E0 is the projectile energy per nucleon in the lab frame.
The cross section of α nucleons participating from projectile is

σα = 2π

∫
P(α, b)bdb. (46)

The forward energy flow cross section then can be written as

dσ

dEZ
=
σα
E0
, (47)

taking into account the discrete nature of the variable α.
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Participant-spectator picture Forward energy

The average forward energy for a collision is written as

EZ (α) = E0(A− < α >)

= E0A[1− (1− qB)]

= E0Aq
B . (48)
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Participant-spectator picture Excitation energy

Excitation energy
When the nucleons collide at relativistic energies they become excited and
produce new particles.
This energy manifests in the measurement of transverse energy and
multiplicity.
The (maximum) excitation energy which is related to the number of
participants is written as

Eex = Ecm −mN(α + β). (49)

The centre of mass energy for this case is given as

E 2
cm = ((αEA + βEB)2 − (αPA + βPB)2), (50)

where

PA =
√

E 2
A −m2

N and

PB =
√
E 2
B −m2

N . (51)
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Participant-spectator picture Excitation energy

Here EA and PA are the total energy and momentum of the nucleus A per
nucleon and mN is nucleon mass.

The cross section for having α participants from A and β participants from
B is

σαβ = 2π

∫
P(A, α, b)P(B, β, b)bdb. (52)

The cross sections for all the possible combinations of α and β are
calculated and the results are binned to obtain the cross section for each
of the excitation energy bin.

30 / 47



Impact parameter and the percentage centrality of collisions

Impact parameter and the percentage centrality of collisions

We consider the collision of a projectile nucleus A of mass number A on a
target nucleus B of mass number B.
Now Define the total probability for the occurence of an inelastic event in
the collision of two nucleus at an impact parameter b is

f (b) = 1− (1− TAB(b)σNN)AB . (53)

The total inelastic cross section can be written as

σin = 2π

∫ ∞
0

bdb
(

1− (1− TAB(b)σNN)AB
)
. (54)

The fraction of cross section within bmin to bmax is given by :

F (bmin, bmax) =
2π

σin

∫ bmax

bmin

f (b)bdb (55)

Total Pb+Pb inelastic cross section is obtained as 8178 mb.
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Impact parameter and the percentage centrality of collisions
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Figure: f (b) versus b.
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Impact parameter and the percentage centrality of collisions
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Impact parameter and the percentage centrality of collisions

The average of impact parameter can be calculated for a centrality bin.

< b >=
2π

F (bmin, bmax)

∫ bmax

bmin

bf (b)bdb (56)

The avergae of nuclear overlapiing function can be calculated as a function
of impact parameter b :

< TAB >=
2π

F (bmin, bmax)

∫ bmax

bmin

TAB(b)f (b)bdb (57)
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Impact parameter and the percentage centrality of collisions

The average number of total participant from both projectile and target as
a function of impact parameter b is given by :

< Npart >=
2π

F (bmin, bmax)

∫ bmax

bmin

Npart(b)f (b)bdb (58)

The average number of nuclei-nuclei collision as a function of impact
parameter b is given by :

< Ncoll >=
2π

F (bmin, bmax)

∫ bmax

bmin

Ncoll(b)f (b)bdb (59)
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Impact parameter and the percentage centrality of collisions

Table: Centrality Table

bmin − bmax cent1-cent2 < b > < T (b) > < Ncoll >

0 - 5.1 0-10 3.38 22.71 1589
5.1 - 7.21 10-20 6.21 13.77 964

7.21 - 8.83 20-30 8.04 8.18 573
8.83 - 10.20 30-40 9.52 4.58 321

10.20 - 11.41 40-50 10.82 2.34 164
11.41 - 12.5 50-60 11.94 1.1 76
12.5 - 13.5 60-70 13.00 0.43 30

13.5 - 14.43 70-80 13.95 0.16 11
14.43 - 15.36 80-90 14.87 0.052 3.7
15.36 - 21.8 90-100 16.21 0.021 1.4

36 / 47



Calculation of T(b): Special cases

Calculation of T(b): Special cases
In the co-ordinate space T (b) is derived as

T (b) =

∫
ρzA(bA)dbA ρ

z
B(bB)dbB t(b− bA + bB). (60)

The profile function for the NN scattering in general taken as a gaussian
function of width r0 as

t(b) =
exp(−b2/(2r20 ))

2πr20
. (61)

It can be taken as delta function if the nucleons are assumed a point
particles (r0 → 0).

t(b) = δ2(b − 0). (62)
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Calculation of T(b): Special cases

This gives

T (b) =

∫
ρzA(bA)dbA ρ

z
B(bB)dbB δ2(b− bA + bB). (63)

T (b) =

∫
ρzA(bA)dbA ρ

z
B(bA − b) (64)

It is also written as

TAB(b) =

∫
ρzA(s)ds ρzB(s− b) (65)
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Calculation of T(b): Special cases

Figure: Collision of two nuclei at an impact parameter b
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Calculation of T(b): Special cases

Calculation of T(b): pA collisions

TA(b) =

∫
ρzA(s)ds ρzB(s− b) (66)

Let me replace ρzB(s− b) = δ2(s− b)

TA(b) = ρzA(b) (67)

Let me also write for pB collisions

TB(b) = ρzB(b) (68)

σinA = 2π

∫
bdb

(
1− (1− T (b)σNN)A

)
. (69)
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Number of participant : Improved formula

Number of participant : Improved formula

σinAB = 2π

∫
bdb

(
1− (1− T (b)σNN)AB

)
. (70)

We derived number of participants as

Npart = A[1− (1− T (b)σNN)B ] + B[1− (1− T (b)σNN)A]. (71)

The improved formula

Npart = A

∫
d2sTA(s)

(
1− (1− TB(s− b)σNN)B

)
+B

∫
d2sTB(s− b)

(
1− (1− TA(b)σNN)A

)
(72)

Note, q = (1− T (b)σNN) gives the probability that two nucleon at an
impact parameter b do not collide.
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Scaling the pp cross sections to cross sections in AA collisions

Scaling the pp hard events cross sections to hard events cross
sections in AA collisions
The inclusive inelastic scattering cross section is given by

σinAB = 2π

∫
bdb

(
1− (1− TAB(b)σNN)AB

)
. (73)

We can write the hard scattering cross section as

σhardAB = 2π

∫
bdb

(
1− (1− TAB(b)σhardNN )AB

)
. (74)

It can be approximated by

σhardAB =

∫
2πbdb AB TAB(b)σhardNN . (75)

The hard scattering cross section for minimum bias collisions

σhardAB = AB σhardNN (76)
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Scaling the pp cross sections to cross sections in AA collisions

Hard scattering yield

Nhard
AB (b) = σhardNN TAB(b). (77)

Number of binary collisions is given by

Ncoll(b) = AB σNNTAB(b). (78)

Thus the hard scattering yield will be

Nhard
AB (b) =

Ncoll(b)

σNN
σhardNN . (79)
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Glauber Monte Carlo approach

Glauber Monte Carlo approach

The coordinates of the nucleons are generated as per the density
distributions of the two nuclei.

The impact parameter is generated as per dσ/db = 2πb.

A nucleon nucleon collision probability is calculated.

All required quantities are obtained.
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Glauber Monte Carlo approach

Figure: Snapshot of Glauber MC for Au+Au collisions
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Summary

Summary

I presented the basic formalism of Glauber Model along with
derivation.

One can calculate most required quantities in Heavy Ion collisions like
number of participants, number of collisions with this presn.

One can calculate centrality and associated it with Npart, Ncoll.

One can calculate hard cross sections like J/psi production, jet
production, photon production etc.

On can calculate global quantities like multiplicity, transverse energy
etc.

46 / 47



Summary

C.Y. Wong, Introduction to High Energy Heavy Ion Collisions, World
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P. Shukla, “Glauber model for heavy ion collisions from low-energies
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